Andrade M.R., Costa J.A.V. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 2007, 264:130-134.
Becker E.W. Nutritional properties of microalgae: potential and constraints. Handbook of Microalgal Mass Culture 1986, 339-420. CRC, Press, Boca Raton, FL. A. Richmond (Ed.).
Behrens P.W., Kyle D.J. Microalgae as a source of fatty acids. J. Food Lipids 1996, 3:259-272.
Benemann J.R., Oswald W.J. Systems and Economic Analysis of Microalgae Ponds for Conversion of CO2 to Biomass 1996, Pittsburgh Energy Technology Center, pp. 260.
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37:911-917.
Bolling C., Fiehn O. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 2005, 139:1995-2005.
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72:248-254.
Brennan L., Owende P. Biofuels from microalgae - a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sust. Energy Rev. 2010, 14:557-577.
Browse J., McCourt P.J., Somerville C.R. Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal. Biochem. 1986, 152:141-145.
Burhenne N., Tischner R. Isolation and characterization of nitrite-reductase-deficient mutants of Chlorella sorokiniana (strain 211-8k). Planta 2000, 211:440-445.
Chen W., Zhang C., Song L., Sommerfeld M., Hu Q. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 2009, 77:41-47.
Chimiklis P.E., Karlander E.P. Light and calcium interactions in Chlorella inhibited by sodium chloride. Plant Physiol. 1973, 51:48-56.
Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007, 25:294-306.
da Silva T.L., Reis A., Medeiros R., Oliveira A.C., Gouveia L. Oil production towards biofuel from autotrophic microalgae semicontinuous cultivations monitorized by flow cytometry. Appl. Biochem. Biotechnol. 2009, 159:568-578.
Deng X., Li Y., Fei X. Microalgae: a promising feedstock for biodiesel. African J. Microbiol. Res. 2009, 3:1008-1014.
Denyer K., Smith A.M. The capacity of plastids from developing pea cotyledons to synthesize acetyl CoA. Planta 1988, 173:172-182.
Dismukes G.C., Carrieri D., Bennette N., Ananyev G.M., Posewitz M.C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 2008, 19:235-240.
Doebbe A., Keck M., La Russa M., Mussgnug J.H., Hankamer B., Tekce E., Niehaus K., Kruse O. The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J. Biol. Chem. 2010, 285:30247-30260.
Elsey D., Jameson D., Raleigh B., Cooney M.J. Fluorescent measurement of microalgal neutral lipids. J. Microbiol. Methods 2007, 68:639-642.
Galloway R.E. Selective conditions and isolation of mutants in salt-tolerant, lipid-producing microalgae. J. Phycol. 1990, 26:752-760.
Geigenberger P., Hajirezaei M., Geiger M., Deiting U., Sonnewald U., Stitt M. Overexpression of pyrophosphatase leads to increased sucrose degradation and starch synthesis, increased activities of enzymes for sucrose-starch interconversions, and increased levels of nucleotides in growing potato tubers. Planta 1998, 205:428-437.
Gouveia L., Oliveira A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009, 36:269-274.
Griffiths M.J., Harrisson S.T.L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 2009, 21:493-507.
Guschina I.A., Harwood J.L. Lipids and lipid metabolism in eukaryotic algae. Prog. Lipid Res. 2006, 45:160-186.
Harris E.H. The Chlamydomonas Sourcebook 1989, Academic Press, San Diego.
Harwood J.L., Jones A.L. Lipid metabolism in algae. Advances in Botanical Research 1989, 1-53. Academic Press. J.A. Callow (Ed.).
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 2008, 54:621-639.
Kang F., Rawsthorne S. Starch and fatty acid synthesis in plastids from developing embryos of oilseed rape (Brassica napus L.). Plant J. 1994, 6:795-805.
Knobloch O., Tischner R. Characterization of nitrate reductase deficient mutants of Chlorella sorokiniana. Plant Physiol. 1989, 89:786-791.
Krauss R.W., Thomas W.H. The growth and inorganic nutrition of Scenedesmus obliquus in mass culture. Plant Physiol. 1954, 29:205-214.
Kropat J., Hong-Hermesdorf A., Casero D., Ent P., Castruita M., Pellegrini M., Merchant S.S., Malasarn D. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 2011, 66:770-780.
Li Y., Han D., Hu G., Dauvillee D., Sommerfeld M., Ball S., Hu Q. Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 2010, 12:387-391.
Li Y., Han D., Hu G., Sommerfeld M., Hu Q. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii. Biotechnol. Bioeng. 2010, 107:258-268.
Lichtenthaler H. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148:350-382.
Lv J.M., Cheng L.H., Xu X.H., Zhang L., Chen H.L. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresour. Technol. 2010, 101:6797-6804.
Mandal S., Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 2009, 84:281-291.
Mandal S., Mallick N. Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus. Appl. Environ. Microbiol. 2011, 77:374-377.
Matthew T., Zhou W., Rupprecht J., Lim L., Thomas-Hall S.R., Doebbe A., Kruse O., Hankamer B., Marx U.C., Smith S.M., Schenk P.M. The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J. Biol. Chem. 2009, 284:23415-23425.
Merchant S.S., Prochnik S.E., Vallon O., Harris E.H., Karpowicz S.J., Witman G.B., Terry A., Salamov A., Fritz-Laylin L.K., Marechal-Drouard L., Marshall W.F., Qu L.H., Nelson D.R., Sanderfoot A.A., Spalding M.H., Kapitonov V.V., Ren Q., Ferris P., Lindquist E., Shapiro H., Lucas S.M., Grimwood J., Schmutz J., Cardol P., Cerutti H., Chanfreau G., Chen C.L., Cognat V., Croft M.T., Dent R., Dutcher S., Fernandez E., Fukuzawa H., Gonzalez-Ballester D., Gonzalez-Halphen D., Hallmann A., Hanikenne M., Hippler M., Inwood W., Jabbari K., Kalanon M., Kuras R., Lefebvre P.A., Lemaire S.D., Lobanov A.V., Lohr M., Manuell A., Meier I., Mets L., Mittag M., Mittelmeier T., Moroney J.V., Moseley J., Napoli C., Nedelcu A.M., Niyogi K., Novoselov S.V., Paulsen I.T., Pazour G., Purton S., Ral J.P., Riano-Pachon D.M., Riekhof W., Rymarquis L., Schroda M., Stern D., Umen J., Willows R., Wilson N., Zimmer S.L., Allmer J., Balk J., Bisova K., Chen C.J., Elias M., Gendler K., Hauser C., Lamb M.R., Ledford H., Long J.C., Minagawa J., Page M.D., Pan J., Pootakham W., Roje S., Rose A., Stahlberg E., Terauchi A.M., Yang P., Ball S., Bowler C., Dieckmann C.L., Gladyshev V.N., Green P., Jorgensen R., Mayfield S., Mueller-Roeber B., Rajamani S., Sayre R.T., Brokstein P., Dubchak I., Goodstein D., Hornick L., Huang Y.W., Jhaveri J., Luo Y., Martinez D., Ngau W.C., Otillar B., Poliakov A., Porter A., Szajkowski L., Werner G., Zhou K., Grigoriev I.V., Rokhsar D.S., Grossman A.R. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 2007, 318:245-250.
Miller R., Wu G., Deshpande R.R., Vieler A., Gartner K., Li X., Moellering E.R., Zauner S., Cornish A.J., Liu B., Bullard B., Sears B.B., Kuo M.H., Hegg E.L., Shachar-Hill Y., Shiu S.H., Benning C. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010, 154:1737-1752.
Moellering E.R., Benning C. RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot. Cell 2009, 9:97-106.
Moseley J.L., Gonzalez-Ballester D., Pootakham W., Bailey S., Grossman A.R. Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses. Genetics 2009, 181:889-905.
Nichols B.W. Light induced changes in the lipids of Chlorella vulgaris. Biochim. Biophys. Acta 1965, 106:274-279.
Ral J.P., Colleoni C., Wattebled F., Dauvillee D., Nempont C., Deschamps P., Li Z., Morell M.K., Chibbar R., Purton S., d'Hulst C., Ball S.G. Circadian clock regulation of starch metabolism establishes GBSSI as a major contributor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiol. 2006, 142:305-317.
Ramazanov A., Ramazanov Z. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content. Phycol. Res. 2006, 54:255-259.
Riemann B., Simonsen P., Stensgaard L. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Plankton Res. 1989, 11:1037-1045.
Rosenberg J.N., Oyler G.A., Wilkinson L., Betenbaugh M.J. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 2008, 19:430-436.
Sheehan J., Dunahay T., Benemann J., Roessler P. A Look Back at the U.S. Department of Energy's Aquatic Species Program-Biodiesel from Algae 1998, National Renewable Energy Laboratory, NREL TP-580-24190.
Shi X.M., Liu H.J., Zhang X.Z., Chen F. Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem. 1999, 34:341-347.
Shockey J.M., Fulda M.S., Browse J.A. Arabidopsis contains nine long-chain acyl-coenzyme: a synthetase genes that participate in fatty acid and glycerolipid metabolism. Plant Physiol. 2002, 129:1710-1722.
Siaut M., Cuine S., Cagnon C., Fessler B., Nguyen M., Carrier P., Beyly A., Beisson F., Triantaphylides C., Li-Beisson Y., Peltier G. Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 2011, 11:7.
Sugimoto K., Midorikawa T., Tsuzuki M., Sato N. Upregulation of PG synthesis on sulfur-starvation for PS I in Chlamydomonas. Biochem. Biophys. Res. Commun. 2008, 369:660-665.
Vigeolas H., Mohlmann T., Martini N., Neuhaus H.E., Geigenberger P. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiol. 2004, 136:2676-2686.
Volkman J.K., Jeffrey S.W., Nichols P.D., Rogers G.I., Garland C.D. Composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 1989, 128:219-240.
Wang Z.T., Ullrich N., Joo S., Waffenschmidt S., Goodenough U. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 2009, 8:1856-1868.
Wen Z.H., Chen F. Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnol. Adv. 2003, 21:273-294.
Yoo C., Jun S.Y., Lee J.Y., Ahn C.Y., Oh H.M. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour. Technol. 2010, 101(Suppl. 1):S71-S74.
Zabawinski C., Van Den Koornhuyse N., D'Hulst C., Schlichting R., Giersch C., Delrue B., Lacroix J.M., Preiss J., Ball S. Starchless mutants of Chlamydomonas reinhardtii lack the small subunit of a heterotetrameric ADP-glucose pyrophosphorylase. J. Bacteriol. 2001, 183:1069-1077.