X-Ray microtomography; biomechanics; finite element
Abstract :
[en] Finite element models accurately compute the mechanical response of bone and bone-like materials when the models include their detailed microstructure. The aim of this paper is to develop and validate a biomechanical model for deer antler cancellous bone tissue based on X-ray microtomographic images. In order to simulate the mechanical behavior under compressive load using a finite element model, images obtained by X-ray microtomography were exported into Metafor, which is an non-linear finite element software initially developed at University of Liège for metal forming processes. This software has recently found biomedical applications. The ultimate goal is to compare model predictions with the mechanical behavior observed experimentally using the Skyscan material testing stage under compression mode. The creation of the biomechanical model mesh from segmented μCT images, its integration into the software Metafor and the simulation of a compression test are described in this paper.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.