Poster (Scientific congresses and symposiums)
Machine learning techniques for atmospheric pollutant monitoring
Sainlez, Matthieu; Heyen, Georges
2012PhD day ENVITAM-GEPROC
 

Files


Full Text
Poster_PHDday.pdf
Author preprint (4.05 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] Machine learning techniques are compared to predict nitrogen oxide (NOx) pollutant emission from the recovery boiler of a Kraft pulp mill. Starting from a large database of raw process data related to a Kraft recovery boiler, we consider a regression problem in which we are trying to predict the value of a continuous variable. Generalization is done on the worst case configuration possible to make sure the model is adequate: the training period concerns stationary operations while test periods mainly focus on NOx emissions during transient operations.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sainlez, Matthieu ;  Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Heyen, Georges ;  Université de Liège - ULiège > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques)
Language :
English
Title :
Machine learning techniques for atmospheric pollutant monitoring
Publication date :
27 January 2012
Number of pages :
A0
Event name :
PhD day ENVITAM-GEPROC
Event organizer :
ENVITAM Graduate School and GEPROC Graduate School
Event place :
Gembloux, Belgium
Event date :
27 janvier 2012
By request :
Yes
Available on ORBi :
since 13 April 2012

Statistics


Number of views
82 (8 by ULiège)
Number of downloads
3 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi