Yield estimates; Regional scale; Green area index; Senescence; Wheat; MODIS
Abstract :
[en] Earth observation data, owing to their synoptic, timely and repetitive coverage, have been recognized as a valuable tool for crop monitoring at different levels. At the field level, the close correlation between green leaf area (GLA) during maturation and grain yield in wheat revealed that the onset and rate of senescence appeared to be important factors for determining wheat grain yield. Our study sought to explore a simple approach for wheat yield forecasting at the regional level, based on metrics derived from the senescence phase of the green area index (GAI) retrieved from remote sensing data. This study took advantage of recent methodological improvements in which imagery with high revisit frequency but coarse spatial resolution can be exploited to derive crop-specific GAI time series by selecting pixels whose ground-projected instantaneous field of view is dominated by the target crop: winter wheat. A logistic function was used to characterize the GAI senescence phase and derive the metrics of this phase. Four regression-based models involving these metrics (i.e., the maximum GAI value, the senescence date and the thermal time taken to reach 50% of the green surface in the senescent phase) were related to official wheat yield data. The performances of such models at this regional scale showed that final yield could be estimated with an RMSE of 0.57 ton ha−1, representing about 7% as relative RMSE. Such an approach may be considered as a first yield estimate that could be performed in order to provide better integrated yield assessments in operational systems.
Kouadio, Amani Louis ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Agrométéorologie (relation agriculture-environ. physique)
Duveiller, Gregory; European Joint Research Centre > Institute for the Environment and Sustainability > Monitoring Agricultural Resources Unit
Djaby, Bakary ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > DER Sc. et gest. de l'environnement (Arlon Campus Environ.)
El Jarroudi, Moussa ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Agrométéorologie (relation agriculture-environ. physique)
Deforuny, Pierre; Université Catholique de Louvain - UCL > Earth and Life Institute
Tychon, Bernard ; Université de Liège - ULiège > DER Sc. et gest. de l'environnement (Arlon Campus Environ.) > Agrométéorologie (relation agriculture-environ. physique)
Language :
English
Title :
Estimating regional wheat yield from the shape of decreasing curves of green area index temporal profiles retrieved from MODIS data
Publication date :
2012
Journal title :
International Journal of Applied Earth Observation and Geoinformation
Austin, P.C., Tu, J.V., 2004. Bootstrap methods for developing predictive models. J. Am. Stat. Assoc. 58, 131-137.
Baret, F., 1986. Contribution au suivi radiométrique de cultures de céréales. PhD Thesis. Université de Paris-Sud, France.
Baret, F., Guyot, G., 1986. Radiométrie de la maturation de couverts de Blé dans le visible et le proche infra-rouge. Agronomie 6, 509-516.
Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., Berthelot, B., Niño, F., Weiss, M., Samain, O., Roujean, J.L., Leroy, M., 2007. LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote Sens. Environ. 110, 275-286.
Becker-Reshef, I., Vermote, E., Lindeman, M., Justice, C., 2010. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 114, 1312-1323.
Blandino, M., Reyneri, A., 2009. Effect of fungicide and foliar fertilizer application to winter wheat at anthesis on flag leaf senescence, grain yield, flour bread-making quality and DON contamination. Eur. J. Agron. 30, 275-282.
Chen, J.M., Black, T.A., 1992. Defining leaf area index for non-flat leaves. Plant Cell Environ. 15, 421-429.
Cracknell, A.P., 1998. Review article. Synergy in remote sensing - what's in a pixel. Int. J. Remote Sens. 19, 2025-2047.
Delécolle, R., Maas, S.J., Guérif, M., Baret, F., 1992. Remote sensing and crop production models: present trends. ISPRS J. Photogramm. Remote Sens. 47, 145-161.
Dimmock, J.P.R.E., Gooding, M.J., 2002. The effects of fungicides on rate and duration of grain filling in winter wheat in relation to maintenance of flag leaf green area. J. Agric. Sci. 138, 1-16.
Doraiswamy, P.C., Sinclair, T.R., Hollinger, S., Akhmedov, B., Stern, A., Prueger, J., 2005. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ. 97, 192-202.
Dorigo, W.A., Zurita-Milla, R., de Wit, A.J.W., Brazile, J., Singh, R., Schaepman, M.E., 2007. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinform. 9, 165-193.
Duveiller, G., 2011. Crop specific green area index retrieval from multi-scale remote sensing for agricultural monitoring. PhD Thesis. Université catholique de Louvain, Belgium.
Duveiller, G., Baret, F., Defourny, P., 2011a. Crop specific green area index retrieval from MODIS data at regional scale by controlling pixel-target adequacy. Remote Sens. Environ. 115, 2686-2701.
Duveiller, G., Defourny, P., 2010. A conceptual framework to define the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ. 114, 2637-2650.
Duveiller, G., Weiss, M., Baret, F., Defourny, P., 2011b. Retrieving wheat green area index during the growing season from optical time series measurements based on neural network radiative transfer inversion. Remote Sens. Environ. 115, 887-896.
Efron, B., Tibshirani, R., 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat. Sci. 1, 54-75.
El Jarroudi, M., Delfosse, P., Maraite, H., Hoffmann, L., Tychon, B., 2009. Assessing the accuracy of simulation model for Septoria leaf blotch disease progress on winter wheat. Plant Dis. 93, 983-992.
El Jarroudi, M., Kouadio, L., Martin, B., Giraud, F., Delfosse, P., Hoffmann, L., Tychon, B., 2010. Modelling plant diseases impact with the Belgian crop growth monitoring system. In: Wery, J., Shili-Touzi, I., Perrin, A. (Eds.), Proceedings of 'Agro2010 the XIth ESA Congress', Montpellier. August 29th-September 3rd, 2010, Agropolis International Editions. Montpellier, France, pp. 519-520.
EUROSTAT, 2010. Agricultural Statistics Main Results-2008-09, Eurostat Pocketbooks, 2010 Edition. Publications Office of the European Union, Luxembourg.
Fan, X., Wang, L., 1996. Comparability of jack-knife and bootstrap results: an investigation for a case of canonical correlation analysis. J. Exp. Educ. 64, 173-189.
Ferencz, C., Bognár, P., Lichtenberger, J., Hamar, D., Tarcsai, G., Timár, G., Molnár, G., Pásztor, S., Steinbach, P., Székely, B., Ferencz, O.E., Ferencz-Árkos, I., 2004. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 25, 4113-4149.
Franks, S.W., Beven, K.J., Quinn, P.F., Wright, I.R., 1997. On the sensitivity of soilvegetation- atmosphere transfer (SVAT) schemes: equifinality and the problem of robust calibration. Agric. Forest Meteorol. 86, 63-75.
Gooding, M.J., Dimmock, J.P.R.E., France, J., Jones, S.A., 2000. Green leaf area decline of wheat flag leaves: the influence of fungicides and relationships with mean grain weight and grain yield. Ann. Appl. Biol. 136, 77-84.Z
Gower, S.T., Kucharik, C.J., Norman, J.M., 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems - a real or imaginary problem? Remote Sens. Environ. 70, 29-51.
Hadria, R., Duchemin, B., Jarlan, L., Dedieu, G., Baup, F., Khabba, S., Olioso, A., Le Toan, T., 2010. Potentiality of optical and radar satellite data at high spatio-temporal resolutions for the monitoring of irrigated wheat crops in Morocco. Int. J. Appl. Earth Obs. Geoinform. 12, S32-S37.
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. Forest Meteorol. 121, 19-35.
Kouadio, L., Djaby, B., Duveiller, G., El Jarroudi, M., Tychon, B. Cinétique de décroissance de la surface verte et estimation du rendement du blé d'hiver. Biotechnol. Agron. Soc. Environ., in press.
Launay M., Guerif M., 2005. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Agric. Ecosyst. Environ. 111 321-339.
Lauvernet C., 2005. Assimilation variationnelle d'observations de télédétection dans les modèles de fonctionnement de la vegetation: utilisation du modèle adjoint et prise en compte de contraintes spatiales. PhD Thesis. Université Joseph Fourier Grenoble I, France.
Masle J., Doussinault G., Farquhar G.D., Sun B., 1989. Foliar stage in wheat correlates better to photothermal time than to thermal time. Plant Cell Environ. 12 235-247.
Moriondo M., Maselli F., Bindi M., 2007. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 26 266-274.
Moulin S., Bondeau A., Delecolle R., 1998. Combining agricultural crop models and satellite observations: from field to regional scales. Int. J. Remote Sens. 19 1021-1036.
Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G.R., Lotsch, A., Friedl, M., et al., 2002. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 83, 214-231.
Olesen, J.E., Jensen, T., Petersen, J., 2000. Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Clim. Res. 15, 221-238.
Reynolds, M.P., Delgado, B.M.I., Gutiérrez-Rodríguez, M., Larqué-Saavedra, A., 2000. Photosynthesis of wheat in a warm, irrigated environment: I: genetic diversity and crop productivity. Field Crops Res. 66, 37-50.
Richards, R.A., 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 51, 447-458.
Supit, I., 2000. An exploratory study to improve the predictive capacity of the crop growth monitoring system as applied by the European Commission. Treemail Publishers, Heelsum, The Netherlands.
Vossen, P., Rijks, D., 1995. Early crop yield assessment of the EU countries: the system implemented by the Joint Research Centre, Report EUR 16318 EN of the Office for Official Publications of the E.U. Luxembourg, pp. 15-39.
Weiss, M., Baret, F., Smith, G.J., Jonckheere, I., Coppin, P., 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. Forest Meteorol. 121, 37-53.