Paper published in a book (Scientific congresses and symposiums)
Contextual Multi-armed Bandits for Web Server Defense
Jung, Tobias; Martin, Sylvain; Ernst, Damien et al.
2012In Hussein, Abbas (Ed.) Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN)
Peer reviewed
 

Files


Full Text
main_cr.pdf
Author preprint (343.09 kB)
(svn r214)
Download
Annexes
IJCNN2012_slides.pdf
Publisher postprint (788.84 kB)
Slides from talk
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reinforcement learning; contextual bandits; web server
Abstract :
[en] In this paper we argue that contextual multi-armed bandit algorithms could open avenues for designing self-learning security modules for computer networks and related tasks. The paper has two contributions: a conceptual and an algorithmical one. The conceptual contribution is to formulate the real-world problem of preventing HTTP-based attacks on web servers as a one-shot sequential learning problem, namely as a contextual multi-armed bandit. Our second contribution is to present CMABFAS, a new algorithm for general contextual multi-armed bandit learning that specifically targets domains with finite actions. We illustrate how CMABFAS could be used to design a fully self-learning meta filter for web servers that does not rely on feedback from the end-user (i.e., does not require labeled data) and report first convincing simulation results.
Disciplines :
Computer science
Author, co-author :
Jung, Tobias ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Martin, Sylvain ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Leduc, Guy ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Language :
English
Title :
Contextual Multi-armed Bandits for Web Server Defense
Publication date :
2012
Event name :
2012 International Joint Conference on Neural Networks (IJCNN)
Event organizer :
IEEE
Event place :
Brisbane, Australia
Event date :
from 10-6-2012 to 15-6-2012
Audience :
International
Main work title :
Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN)
Editor :
Hussein, Abbas
Publisher :
IEEE
ISBN/EAN :
978-1-4673-1488-6
Pages :
8
Peer reviewed :
Peer reviewed
European Projects :
FP7 - 224619 - RESUMENET - Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
CE - Commission Européenne
Available on ORBi :
since 29 March 2012

Statistics


Number of views
253 (29 by ULiège)
Number of downloads
552 (15 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi