This website uses cookies

The University of Liège wishes to use cookies or trackers to store and access your personal data, to perform audience measurement. Some cookies are necessary for the website to function. Cookie policy.

Paper published in a book (Scientific congresses and symposiums)
Contextual Multi-armed Bandits for Web Server Defense
Jung, Tobias; Martin, Sylvain; Ernst, Damien et al.
2012In Hussein, Abbas (Ed.) Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN)
Peer reviewed
 

Files


Full Text
main_cr.pdf
Author preprint (343.09 kB)
(svn r214)
Download
Annexes
IJCNN2012_slides.pdf
Publisher postprint (788.84 kB)
Slides from talk
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reinforcement learning; contextual bandits; web server
Abstract :
[en] In this paper we argue that contextual multi-armed bandit algorithms could open avenues for designing self-learning security modules for computer networks and related tasks. The paper has two contributions: a conceptual and an algorithmical one. The conceptual contribution is to formulate the real-world problem of preventing HTTP-based attacks on web servers as a one-shot sequential learning problem, namely as a contextual multi-armed bandit. Our second contribution is to present CMABFAS, a new algorithm for general contextual multi-armed bandit learning that specifically targets domains with finite actions. We illustrate how CMABFAS could be used to design a fully self-learning meta filter for web servers that does not rely on feedback from the end-user (i.e., does not require labeled data) and report first convincing simulation results.
Disciplines :
Computer science
Author, co-author :
Jung, Tobias ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Martin, Sylvain ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Leduc, Guy ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Réseaux informatiques
Language :
English
Title :
Contextual Multi-armed Bandits for Web Server Defense
Publication date :
2012
Event name :
2012 International Joint Conference on Neural Networks (IJCNN)
Event organizer :
IEEE
Event place :
Brisbane, Australia
Event date :
from 10-6-2012 to 15-6-2012
Audience :
International
Main work title :
Proceedings of 2012 International Joint Conference on Neural Networks (IJCNN)
Editor :
Hussein, Abbas
Publisher :
IEEE
ISBN/EAN :
978-1-4673-1488-6
Pages :
8
Peer reviewed :
Peer reviewed
European Projects :
FP7 - 224619 - RESUMENET - Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
CE - Commission Européenne
Available on ORBi :
since 29 March 2012

Statistics


Number of views
270 (29 by ULiège)
Number of downloads
584 (15 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
1
OpenCitations
 
0
OpenAlex citations
 
2

publications
0
supporting
0
mentioning
0
contrasting
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Bibliography


Similar publications



Sorry the service is unavailable at the moment. Please try again later.
Contact ORBi