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Outline: Two contributions
1. Conceptual: autonomic web server defense as reinforcement learning task

2. Algorithmical: new algorithm CMABFAS (contextual multi-armed bandits for finite action spaces)



The Application
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Case study: detecting and preventing HT TP-based attacks on web servers
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Example
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if not, modify the rules!

Question: how can we do this?
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Answer: Reinforcement learning (RL)

AI User/client Ié_
subsequent requests/
[~ stats computed from
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generator 3. observe stochastic
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x_t . a_t
1. observe HTTP maker 2. choose & apply
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at time t Web server among {1,..,k}

Benefits:

o
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does not require human experts to write/update rules
does not require correctly labeled training data
allows the system to become self-learning

allows the system to defend against novel attacks
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Learning Algorithm:
CMABFAS




X  context space
a€{l,...,k} possible actions for x € X

Re(x)  reward distribution for situation = and action a

bounded support: supp R%(z) C [0, 1]
r®(x)  samples drawn from R%(x)

p®(xz)  mean of the reward distribution R%(x)
Goal: when presented with any z € X, we want to choose the action with the highest expected

reward

. a
given x, return argmax p®(x)
a

The catch: R*(x) and u®(x) is not known!!!

Solution: estimate u®(x) from samples => exploration vs. exploitation




® So far, this looks a lot like a traditional k-armed bandit.
® The main difference is: in k-armed bandits the reward does not depend on =x.

® Learning in contextual MAB is significantly more difficult since we have to aggregate
samples over X'. These samples are no longer iid samples (different base distributions).

® In order to make learning possible, we need to make some additional structural assumptions:

The expected reward is smooth over X

® Formally: let X be equipped with pseudo-metric d(x,x’) (with sup, ., d(z,z') =1). We
then assume that each p®(-) is Lipschitz:

ju?(z) — p(2)] < X-d(z,z’) Vz,z’ € X,Va




o —samples 7“1(-) ~ Rl()
reward » =samples r2(-) ~ R2(")

action 1 action 2 action 1 action 2
optimal optimal optimal optimal




® For each action a separately, we incrementally construct over time t = 1,2,... a cover of
X.

® The cover consists of ball-shaped regions where individual balls are centered on some of the

{x1,...,x¢—1} seen so far.

1 1

® The cover is hierarchical with the radius of the balls decreasing as 1, 5, 7, .. ..

® Each ball aggregates the reward samples lying within.

#® Each ball covering x; can be used to upper-bound p®(x¢) and produces a score which

consists of
1. sample average within the ball (exploitation)
2. how many samples are in the ball (exploration)

3. how large is the ball (exploration)

® The best ball for each action is then the one with the lowest score (tightest upper bound).

® The best action overall is the highest such score.




Context space (x=sample locations)

Level 1 (radius=1) Level 2 (radius=1/2) Level 3 (radius=1/4)

Adaptive refinement: New balls are created according to the following rules:

® A new ball is created centered at (x¢,a+) at 1/2 radius of the parent (where a; is the
action chosen at time t).

® A new ball can only be created if the number of samples in the parent ball exceeds a certain
threshold (i.e., the ball is full).

® A new ball is only created if it will not overlap with already existing balls at the same level
of the hierarchy.




® Fort=1,2,...
o Get context x:.

o For each actiona=1...k
s Determine set of active balls A% (x;)

(=balls which cover x)
s Determine set of relevant balls R*(x¢)

(=active balls which are either not full, or are full and can produce a child)

o Determine score

B
u(zxe,a) = 5 rll_%ir(l ) [ QtEB; +c-/logT/n¢(B)+2-X- r(B)]
c a(qx nt (. ~ v (. ~ v
' 3 - uncertainty uncertainty
vg rew
. i I B due to due to
e #samples in B size of B

» Perform best action at := argmax,c;  j u(zt,a)
o Observe reward ry ~ R (x¢) and update counters.

» Adaptive refinement: Add new ball at (z¢,a¢) with 1/2 radius if winning ball is full
(and thus allows a child to be created)




Analysis: CMABFAS works because

® the score u(xt,a) is a high-probability bound for u®(x¢) (Azuma-Hoeffding for martingales
with bounded increments)

® the radius of the "winning" ball at step ¢ can thus be used to upper-bound the loss at step
t (smaller balls, better accuracy)

® the adaptive refinement rules ensure that the balls get smaller, but only in those regions of
X where the corresponding action is optimal.

® the number of times large balls are "winning" balls can be upper-bound by the r-packing
number of X' (and the near optimality dimension of the problem, see [Slivkins, 2009;
Bubeck et al. 2008; Munos 2011]) = regret bounds!

Implementation: From a practical point of view CMABFAS has two nice properties:

® it is a cheap algorithm with little computational cost and low storage requirements

® it is an anytime algorithm




Experiments




Web server defense scenario

Our current modeling of the web server defense scenario as contextual MAB looks like this:

X  attributes extracted from the initial HTTP request of a session

(essentially a vector of text strings)
d(x,x’)  comparing two text strings (for details see paper)

a  {action #1,action #2, action #3}

action #1: apply no security measure

action #2: apply security measure Type-1 (abstract action)
action #3: apply security measure Type-2 (abstract action)

r(z,a)

each HTTP session was manually labeled and assigned to one of 9 classes

each class was manually assigned a reward profile (Bernoulli distribution)

WIP: originally we envisioned an automated procedure to internally generate rewards

Note: Unlike in classification or anomaly detection, we cannot work with training data to verify our
approach. Due to the interactive nature the system choosing actions must be able to observe how

the environments responds. This is very difficult to simulate.
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Data: obtained from a real, locally hosted web server
® 57,389 HTTP requests grouped into 1126 sessions (logged between Jan-Dec 2011)

® mostly regular traffic, but also
» scans for vulnerable versions of installed packages
» remote code injection attempts

o spam on public wiki

Experiment:
® Each of the sessions was semi-automatically assigned to a class/reward profile

®» Fort=1...1,000,000, draw random session x; from corpus and present it to the
CMABFAS defense system

Contestant: compare against a naive baseline method which
® incrementally but non-adaptively clusters X
® assigns each incoming x¢ to the nearest cluster

#® uses a traditional k-armed bandit to handle each cluster separately (UCB-1.2).




Regret/t
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Overall:
® CMABFAS: ~ 450 mistakes (out of 1,000,000 possible ones)
® Best naive MAB: ~ 3200 mistakes (out of 1,000,000 possible ones)



Two contributions:

1. Conceptual:

® Architecture for a self-learning web server defense via RL

2. Algorithmical:
® CMABFAS (a new algorithm for contextual MAB)

Note: All of this is ongoing work. Experiments so far were merely "simulated".
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