Contextual Multi-Armed Bandits for
Web Server Defense

Tobias Jung, Sylvain Martin, Damien Ernst, and Guy Leduc

Montefiore Institute

University of Liege

{tjung}@il g. ac. be

Outline: Two contributions
1. Conceptual: autonomic web server defense as reinforcement learning task

2. Algorithmical: new algorithm CMABFAS (contextual multi-armed bandits for finite action spaces)

The Application

=

@. & nttpsi/iem.. P - @ B O X | @ Forgot Password - ICML

Microsofi m

Research International Conference on Machine Learning
June 26 - July 1, 2012 , Edinburgh, Scotland, UK

Password Reset Assistance

You can use this page to reset password for your acount. Alternatively you can contact
the program chairs to reset passward on your behalf.

Please enter the code displayed in the Image

T R Ao PR T T =
" . i)

Highly annoying!!!

(If you cannot read the code, please reload this page
to get a new code.)

;Enter your E-mall to reset your passwnrd.:
Email:

_ Submit |

Case study: detecting and preventing HT TP-based attacks on web servers

Case study: detecting and preventing HT TP-based attacks on web servers

regular
user

Web server

dedicated
hackers

Case study: detecting and preventing HT TP-based attacks on web servers

Input

M~——"A—

regular
user .
HTTP

. request
o 0 Web server

*
4

dedicated
hackers

Case study: detecting and preventing HT TP-based attacks on web servers

Input

e.g. trying to post
sth on a wiki, request
a large image, etc.

regular
user .
HTTP

: request
o 0 Web server

dedicated
hackers

Input

e.g. trying to post
sth on a wiki, request
a large image, etc.

regular
user

HTTP
request

R Web server

dedicated
hackers

Making a decision

N—

present
CAPTCHA

passed

faile

Case study: detecting and preventing HT TP-based attacks on web servers

A

process
request
normally

process
request
normally

ignore
request

ignore
request

Case study: detecting and preventing HT TP-based attacks on web servers

Input

Making a decision

e.g. trying to post

regular
user

HTTP
request

dedicated
hackers

sth on a wiki, request
a large image, etc.

g Web server CAPTCHA

solutions today have
fixed rules
to make this decision

present

faile

process
request
normally

process
request
normally

ignore
request

ignore
request

Case study: detecting and preventing HT TP-based attacks on web servers

Input

Making a decision

Feedback

M~ A N A AN

regular
user

HTTP
request

e.g. trying to post
sth on a wiki, request
a large image, etc.

dedicated
hackers

solutions today have
fixed rules
to make this decision

present

Web server CAPTCHA

faile

process
request
normally

process
request
normally

ignore
request

did we
make the

right choice
?22?

ignore
request

Example

Case study: detecting and preventing HT TP-based attacks on web servers

Input Making a decision Feedback

M~ A N A AN

solutions today have
fixed rules
to make this decision

e.g. trying to post
sth on a wiki, request
a large image, etc.

process
request
normally

regular
user

process .
request did we

resent normally make the

CAPTCHA right choice
7?

HTTP
. request
o xR Web Se rve r

*

dedicated
hackers

ignore
request

faile

ignore
request

if not, modify the rules!

Question: how can we do this?
IJCNN’'12: CMABFAS for Web Server Defense — Brisbane, June 14, 2012 — p.4/18

Answer: Reinforcement learning (RL)

AI User/client Ié_
subsequent requests/
[~ stats computed from
traffic
Y
Reward
generator 3. observe stochastic
~reward r_t which
r_t< £ depends on x_t and a_t
x_t . a_t
1. observe HTTP maker 2. choose & apply
request x_t action a_t from
at time t Web server among {1,..,k}

Benefits:

o

N
N
N

does not require human experts to write/update rules
does not require correctly labeled training data
allows the system to become self-learning

allows the system to defend against novel attacks

IJCNN’'12: CMABFAS for Web Server Defense — Brisbane, June 14, 2012 — p.5/18

Learning Algorithm:
CMABFAS

X context space
a€{l,...,k} possible actions for x € X

Re(x) reward distribution for situation = and action a

bounded support: supp R%(z) C [0, 1]
r®(x) samples drawn from R%(x)

p®(xz) mean of the reward distribution R%(x)
Goal: when presented with any z € X, we want to choose the action with the highest expected

reward

. a
given x, return argmax p®(x)
a

The catch: R*(x) and u®(x) is not known!!!

Solution: estimate u®(x) from samples => exploration vs. exploitation

® So far, this looks a lot like a traditional k-armed bandit.
® The main difference is: in k-armed bandits the reward does not depend on =x.

® Learning in contextual MAB is significantly more difficult since we have to aggregate
samples over X'. These samples are no longer iid samples (different base distributions).

® In order to make learning possible, we need to make some additional structural assumptions:

The expected reward is smooth over X

® Formally: let X be equipped with pseudo-metric d(x,x’) (with sup, ., d(z,z') =1). We
then assume that each p®(-) is Lipschitz:

ju?(z) — p(2)] < X-d(z,z’) Vz,z’ € X,Va

o —samples 7“1(-) ~ Rl()
reward » =samples r2(-) ~ R2(")

action 1 action 2 action 1 action 2
optimal optimal optimal optimal

® For each action a separately, we incrementally construct over time t = 1,2,... a cover of
X.

® The cover consists of ball-shaped regions where individual balls are centered on some of the

{x1,...,x¢—1} seen so far.

1 1

® The cover is hierarchical with the radius of the balls decreasing as 1, 5, 7,

® Each ball aggregates the reward samples lying within.

#® Each ball covering x; can be used to upper-bound p®(x¢) and produces a score which

consists of
1. sample average within the ball (exploitation)
2. how many samples are in the ball (exploration)

3. how large is the ball (exploration)

® The best ball for each action is then the one with the lowest score (tightest upper bound).

® The best action overall is the highest such score.

Context space (x=sample locations)

Level 1 (radius=1) Level 2 (radius=1/2) Level 3 (radius=1/4)

Adaptive refinement: New balls are created according to the following rules:

® A new ball is created centered at (x¢,a+) at 1/2 radius of the parent (where a; is the
action chosen at time t).

® A new ball can only be created if the number of samples in the parent ball exceeds a certain
threshold (i.e., the ball is full).

® A new ball is only created if it will not overlap with already existing balls at the same level
of the hierarchy.

® Fort=1,2,...
o Get context x:.

o For each actiona=1...k
s Determine set of active balls A% (x;)

(=balls which cover x)
s Determine set of relevant balls R*(x¢)

(=active balls which are either not full, or are full and can produce a child)

o Determine score

B
u(zxe,a) = 5 rll_%ir(l) [QtEB; +c-/logT/n¢(B)+2-X- r(B)]
c a(qx nt (. ~ v (. ~ v
' 3 - uncertainty uncertainty
vg rew
. i I B due to due to
e #samples in B size of B

» Perform best action at := argmax,c; j u(zt,a)
o Observe reward ry ~ R (x¢) and update counters.

» Adaptive refinement: Add new ball at (z¢,a¢) with 1/2 radius if winning ball is full
(and thus allows a child to be created)

Analysis: CMABFAS works because

® the score u(xt,a) is a high-probability bound for u®(x¢) (Azuma-Hoeffding for martingales
with bounded increments)

® the radius of the "winning" ball at step ¢ can thus be used to upper-bound the loss at step
t (smaller balls, better accuracy)

® the adaptive refinement rules ensure that the balls get smaller, but only in those regions of
X where the corresponding action is optimal.

® the number of times large balls are "winning" balls can be upper-bound by the r-packing
number of X' (and the near optimality dimension of the problem, see [Slivkins, 2009;
Bubeck et al. 2008; Munos 2011]) = regret bounds!

Implementation: From a practical point of view CMABFAS has two nice properties:

® it is a cheap algorithm with little computational cost and low storage requirements

® it is an anytime algorithm

Experiments

Web server defense scenario

Our current modeling of the web server defense scenario as contextual MAB looks like this:

X attributes extracted from the initial HTTP request of a session

(essentially a vector of text strings)
d(x,x’) comparing two text strings (for details see paper)

a {action #1,action #2, action #3}

action #1: apply no security measure

action #2: apply security measure Type-1 (abstract action)
action #3: apply security measure Type-2 (abstract action)

r(z,a)

each HTTP session was manually labeled and assigned to one of 9 classes

each class was manually assigned a reward profile (Bernoulli distribution)

WIP: originally we envisioned an automated procedure to internally generate rewards

Note: Unlike in classification or anomaly detection, we cannot work with training data to verify our
approach. Due to the interactive nature the system choosing actions must be able to observe how

the environments responds. This is very difficult to simulate.

IJCNN’12: CMABFAS for Web Server Defense — Brisbane, June 14, 2012 — p.15/18

Data: obtained from a real, locally hosted web server
® 57,389 HTTP requests grouped into 1126 sessions (logged between Jan-Dec 2011)

® mostly regular traffic, but also
» scans for vulnerable versions of installed packages
» remote code injection attempts

o spam on public wiki

Experiment:
® Each of the sessions was semi-automatically assigned to a class/reward profile

®» Fort=1...1,000,000, draw random session x; from corpus and present it to the
CMABFAS defense system

Contestant: compare against a naive baseline method which
® incrementally but non-adaptively clusters X
® assigns each incoming x¢ to the nearest cluster

#® uses a traditional k-armed bandit to handle each cluster separately (UCB-1.2).

Regret/t

10

- CMABFAS
Naive: clusters=10, radius=0.2

— — — Naive: clusters=50, radius=0.15
Naive: clusters=200, radius=0.1
— — — Naive: clusters=500, radius=0.1

10 °F

10 10 10° 10* 10° 10°

Number of sessions [t]

Overall:
® CMABFAS: ~ 450 mistakes (out of 1,000,000 possible ones)
® Best naive MAB: ~ 3200 mistakes (out of 1,000,000 possible ones)

Two contributions:

1. Conceptual:

® Architecture for a self-learning web server defense via RL

2. Algorithmical:
® CMABFAS (a new algorithm for contextual MAB)

Note: All of this is ongoing work. Experiments so far were merely "simulated".

	The Application
	We've all seen this before ...
	Example
	Answer: Reinforcement learning (RL)
	Learning Algorithm: \ CMABFAS
	Notation
	MAB vs contextual MAB
	Illustration (2 actions)
	CMABFAS--Overview
	CMABFAS--Overview 2
	CMABFAS--Algorithm
	CMABFAS--Properties
	Experiments
	Web server defense scenario
	Experimental protocol
	Results
	Summary

