Bagnell, J., Schneider, J., Autonomous Helicopter Control using Reinforcement Learning Policy Search Methods International Conference on Robotics and Automation
Bear, M., Connors, B., Paradiso, M., (2006) Neuroscience: Exploring the Brain, , Lippincott Williams & Wilkins
Bellman, R., (1957) Dynamic Programming, , Princeton University Press
Bertsekas, D., Tsitsiklis, J., (1996) Neuro-Dynamic Programming, , Athena Scientific
Braitenberg, V., (1984) Vehicles: Experiments in Synthetic Psychology, , Cambridge, MA, USA, MIT Press
Breiman, L., Friedman, J., Stone, C., (1984) Classification and Regression Trees, , Wadsworth International Group
Brooks, R., Intelligence without representation (1991) Artificial Intelligence, 47, pp. 139-159
Bryant Randal, E., Symbolic Boolean manipulation with Ordered Binary-Decision Diagrams (1992) ACM Computing Surveys, 24 (3), pp. 293-318. , DOI 10.1145/136035.136043
Detry, R., Başeski, E., Popović, M., Touati, Y., Krüger, N., Kroemer, O., Peters, J., Piater, J., Learning objectspecific grasp affordance densities International Conference on Development and Learning
Detry, R., Kraft, D., Buch, A., Krüger, N., Piater, J., Refining grasp affordance models by experience International Conference on Robotics and Automation
Detry, R., Pugeault, N., Piater, J., A probabilistic framework for 3d visual object representation (2009) IEEE Transactions on Pattern Analysis and Machine Intelligence, 31 (10), pp. 1790-1803
Durrant-Whyte, H., Bailey, T., Simultaneous Localisation and Mapping (SLAM): Part i the essential algorithms (2006) Robotics and Automation Magazine, 13, pp. 99-110
Ernst, D., Geurts, P., Wehenkel, L., Iteratively extending time horizon reinforcement learning 14th European Conference on Machine Learning
Geman, S., Bienenstock, E., Doursat, R., Neural networks and the bias/variance dilemma (1992) Neural Computation, 4 (1), pp. 1-58
Gibson, J., (1979) The Ecological Approach to Visual Perception, , Boston, MA, Houghton Mifflin
Gouet, V., Boujemaa, N., Object-based queries using color points of interest (2001) IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 30-36
Hübner, K., Kragić, D., Selection of robot pre-grasps using box-based shape approximation IEEE/RSJ International Conference on Intelligent Robots and Systems
Jodogne, S., Piater, J., Interactive learning of mappings from visual percepts to actions 22nd International Conference on Machine Lea-rning
Jodogne, S., Piater, J., Learning, then compacting visual policies 7th European Workshop on Reinforcement Learning
Jodogne, S., Piater, J.H., Task-driven discretization of the joint space of visual percepts and continuous actions (2006) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4212, pp. 222-233. , Machine Learning: ECML 2006 - 17th European Conference on Machine Learning, Proceedings
Jodogne, S., Piater, J.H., Closed-loop learning of visual control policies (2007) Journal of Artificial Intelligence Research, 28, pp. 349-391. , http://www.jair.org/media/2110/live-2110-3156-jair.pdf
Jodogne, S., Scalzo, F., Piater, J., Task-driven learning of spatial combinations of visual features (2005) Proceedings of the IEEE Workshop on Learning in Computer Vision and Pattern Recognition
Kaelbling, L.P., Littman, M.L., Cassandra, A.R., Planning and acting in partially observable stochastic domains (1998) Artificial Intelligence, 101 (1-2), pp. 99-134. , PII S000437029800023X
Kellman, P., Arterberry, M., (1998) The Cradle of Knowledge, , Cambridge, MA, MIT Press
Kolter, J., Andrew, N., Policy search via the signed derivative (2009) Robotics: Science and Systems, , Cambridge, USA: MIT Press
Kraft, D., Detry, R., Pugeault, N., Başeski, E., Piater, J., Krüger, N., Learning objects and grasp affordances through autonomous exploration Computer Vision Systems: Seventh International Conference (Lecture Notes in Computer Science)
Kraft, D., Pugeault, N., Başeski, E., Popović, M., Kragić, D., Kalkan, S., Wörgötter, F., Krüger, N., Birth of the object: Detection of objectness and extraction of object shape through object action complexes (2008) International Journal of Humanoid Robotics, 5, pp. 247-265
Krüger, N., Lappe, M., Wörgötter, F., Biologically motivated multimodal processing of visual primitives (2004) Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour, 1 (5), pp. 417-428
Miller, A., Knoop, S., Christensen, H., Allen, P., Automatic grasp planning using shape primitives IEEE International Conference on Robotics and Automation
Milner, A., Goodale, M., (1995) The Visual Brain in Action, , Oxford University Press
Montesano, L., Lopes, M., Bernardino, A., Santos-Victor, J., Learning object affordances: From sensory - Motor coordination to imitation (2008) IEEE Transactions on Robotics, 24 (1), pp. 15-26. , DOI 10.1109/TRO.2007.914848
Moore, A., Atkeson, C., The parti-game algorithm for variable resolution reinforcement learning in multidimensional state-spaces (1995) EmphMachine Learning, 21 (3), pp. 199-233
Nene, S., Shree, N., Murase, H., (1996) Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, , Columbia University, New York
Peng, J., Williams, R., Efficient learning and planning with the DYNA framework (1993) Adaptive Behavior, 1, pp. 437-454
Peters, J., Schaal, S., Reinforcement learning of motor skills with policy gradients (2008) Neural Networks, 21 (4), pp. 682-697
Popović, M., Kraft, D., Bodenhagen, L., Başeski, E., Pugeault, N., Kragić, D., Asfour, T., Krüger, N., A strategy for grasping unknown objects based on co-planarity and colour information (2010) Robotics and Autonomous Systems, 58 (5), pp. 551-565
Pugeault, N., Wörgötter, F., Norbert, K., Accumulated visual representation for cognitive vision British Machine Vision Conference
Pugeault, N., Wörgötter, F., Norbert, K., Visual primitives: Local, condensed, and semantically rich visual descriptors and their applications in robotics (2010) International Journal of Humanoid Robotics, Accepted
Riedmiller, M., Gabel, T., Hafner, R., Lange, S., Reinforcement learning for robot soccer (2009) Autonomous Robots, 27 (1), pp. 55-74
Saxena, A., Driemeyer, J., Ng, A.Y., Robotic grasping of novel objects using vision (2008) International Journal of Robotics Research, 27 (2), pp. 157-173. , DOI 10.1177/0278364907087172
Schaal, S., (1997) Learning from Demonstration. Advances in Neural Information Processing Systems, Volume 9, , MIT Press
Shimoga, K.B., Robot grasp synthesis algorithms: A survey (1996) International Journal of Robotics Research, 15 (3), pp. 230-266
Sudderth, E., Ihler, A., Freeman, W., Alan, W., Nonparametric belief propagation (2003) Computer Vision and Pattern Recognition, 1, pp. 605-612
Sutton, R., Barto, A., (1998) Reinforcement Learning: An Introduction, , Cambridge, MA, MIT Press
Thrun, S., Burgard, W., Fox, D., (2005) Probabilistic Robotics, , Cambridge, MA, MIT Press
Ullman, S., Visual routines (1984) Cognition, 18, pp. 97-159
Christopher, W., (1989) Learning from Delayed Rewards, , King's College, Cambridge, UK