[en] Growing amount of high dimensional data requires robust analysis techniques. Tree-based ensemble methods provide such accurate supervised learning models. However, the model complexity can become utterly huge depending on the dimension of the dataset. Here we propose a method to compress such ensemble using random tree induced space and L1-norm regularisation. This leads to a drastic pruning, preserving or improving the model accuracy. Moreover, our approach increases robustness with respect to the selection of complexity parameters.
Joly, Arnaud ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Schnitzler, François ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Geurts, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Wehenkel, Louis ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Pruning randomized trees with L1-norm regularization
Publication date :
29 November 2011
Number of pages :
A0
Event name :
DYSCO Study Day
Event place :
Leuven-Heverlee, Belgium
Event date :
November 29, 2011
Funders :
F. Schnitzler is supported by a F.R.I.A. scholarship. This work was also funded by the Biomagnet IUAP network of the Belgian Science Policy Office and the Pascal2 network of excellence of the EC. The scientific responsibility is the authors'.