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Motivation

Goal of Supervised learning: from a dataset of input-output pairs A robust supervised learning method: ensemble of randomized
{(zi,y:)}7-y C X x )Y tolearnafunction f:X — ) to predict decision trees (eg., extremely randomized trees , Geurts et al., 20006).
the output g for any (new) input . Each decision tree is a hierarchical set of questions which leads

to a prediction.
Supervised learning is often applied on high-dimensional data:
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High dimensional data often requires
huge ensembles of randomized trees

to achieve good performance, i.e. — Huge amount of storage

- a high number of trees,
- each tree is fully developed (no pruning)

Method: pruning with L1-reqgularization

Each tree node /N is associated with a prediction weight w and a node Variable selection is performed by applying L1-norm
characteristic function I(z € N) equals to 1 if the sample (x, y) reaches regularization (LASSO) on the new training samples
the node, 0 otherwise. {(zi = (21,5 209)¥i) e S 2 XV

Example for one tree and one sample:
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The function A(z) = [I[(z € N1),...,I(x € N,)]* thus embeds the original The solution {5;}j_; leads to prune and to reweight the
input space X into a new space Z C {0,1}? with g the total number randomized tree ensemble. A test node can be deleted if
of tree nodes. the weights B, of all its descendants are equal to zero.
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accuracy or even can Forest size Pre-pruning effect
improve it. Robust with respect to the number of trees

and the pre-pruning parameter
Conclusion and perspectives
Our experiments show that it is possible to drastically prune Future research:
ensembles of randomized trees while preserving or even - how to avoid the generation of a huge randomized tree ensemble
Improving their accuracy. prior to regularization?

- Study the links with compressed sensing

Interested? Email me at a.joly@ulg.ac.be or go on www.ajoly.org



