Keywords :
Amidohydrolases/classification/genetics/metabolism; Amino Acid Sequence; Aminopeptidases/classification/genetics/metabolism; Bacterial Proteins; Dipeptides/metabolism; Enzyme Activation; Gram-Negative Bacteria/enzymology; Molecular Sequence Data; Mutagenesis, Site-Directed; Oligopeptides/metabolism; Protein Precursors/classification/genetics/metabolism; Recombinant Proteins; Substrate Specificity
Abstract :
[en] The DmpA (d-aminopeptidase A) protein produced by Ochrobactrum anthropi hydrolyses p-nitroanilide derivatives of glycine and d-alanine more efficiently than that of l-alanine. When regular peptides are utilized as substrates, the enzyme behaves as an aminopeptidase with a preference for N-terminal residues in an l configuration, thus exemplifying an interesting case of stereospecificity reversal. The best-hydrolysed substrate is l-Ala-Gly-Gly, but tetra- and penta-peptides are also efficiently hydrolysed. The gene encodes a 375-residue precursor, but the active enzyme contains two polypeptides corresponding to residues 2-249 (alpha-subunit) and 250-375 (beta-subunit) of the precursor. Residues 249 and 250 are a Gly and a Ser respectively, and various substitutions performed by site-directed mutagenesis result in the production of an uncleaved and inactive protein. The N-terminal Ser residue of the beta-subunit is followed by a hydrophobic peptide, which is predicted to form a beta-strand structure. All these properties strongly suggest that DmpA is an N-terminal amidohydrolase. An exploration of the databases highlights the presence of a number of open reading frames encoding related proteins in various bacterial genomes. Thus DmpA is very probably the prototype of an original family of N-terminal hydrolases.
Scopus citations®
without self-citations
47