Triticum aestivum,winter wheat,; green area index, senescence; yield estimates, hemispherical photography; Triticum aestivum, blé d’hiver,; indice de surface foliaire, sénescence,; rendements des cultures, photographies hémisphériques
Abstract :
[en] A large number of agrometeorological models for crop yield assessment are available with various levels of complexity and empiricism. However, the current development of models for wheat yield forecasting does not always reflect the inclusion of the loss of valuable green area and its relation to biotic and abiotic processes in production situation. In this study the senescence phase of winter wheat (Triticum aestivum L.) is monitored through the GAI (Green Area Index), calculated from digital hemispherical photography taken over plots in Belgium, Grand-Duchy of Luxembourg and France. Two curve-fitting functions (modified Gompertz and modified logistic) are used to describe the senescence phase. Metrics derived from these functions and characterizing this phase (i.e. the maximum value of GAI, the senescence rate and the time taken to reach either 37% or 50% of the green surface in the senescent phase) are related to final grain yields. The regression-based models calculated with these metrics showed that final yield could be estimated with a coefficient of determination of 0,83 and a RMSE of 0,48 t.ha-1. Such simple models may be considered as a first yield estimates that may be performed in order to provide a better integrated yield assessment in operational systems. Indeed, estimation of cereal-crop production, particularly wheat, is considered as a priority in most crop research programs due to the relevance of food grain to world agricultural production. [fr] La prise en compte de la diminution de la surface verte utile et de sa relation avec des processus biotiques et abiotiques pourrait s’avérer primordiale dans le développement de futurs modèles de prévision des rendements de blé dans le contexte actuel de réchauffement climatique. Dans notre étude la phase de décroissance de la surface verte du blé d’hiver (Triticum aestivum L.) est suivie à travers le GAI (Green Area Index), variable calculée à partir de photographies hémisphériques prises sur différentes parcelles en Belgique, au Grand-Duché de Luxembourg et en France. La cinétique de décroissance de cette variable est décrite à l’aide de deux fonctions d’ajustements (les fonctions Gompertz et logistique modifiées). Les paramètres issus de ces fonctions et caractérisant la phase de décroissance (i.e. la valeur maximum du GAI, le taux de sénescence et le temps mis pour atteindre soit 37% ou 50% de la surface verte utile en phase décroissante du GAI) sont mis en relation avec les rendements observés. Les modèles élaborés montrent que le rendement final en grains peut être bien estimé à partir de ces paramètres, avec un coefficient de détermination (R²) de l’ordre de 0,83 et un RMSE de 0,48 t.ha-1. Ces différents résultats rendent cette étude particulièrement intéressante pour une application dans un système opérationnel d’estimation du rendement du blé d’hiver à une échelle nationale ou régionale, l’estimation précoce de la production agricole à ces échelles étant plus que jamais au cœur d’enjeux économiques, géostratégiques et humanitaires importants.
Disciplines :
Agriculture & agronomy
Author, co-author :
Kouadio, Amani Louis ; Université de Liège - ULiège > Doct. sc. (sc. & gest. env. - Bologne)
Djaby, Bakary ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Grégory, Duveiller; Université Catholique de Louvain - UCL / Joint Research Centre (JRC), Institute for the Environment and Sustainability, Monitoring Agricultural Resources Unit
El Jarroudi, Moussa ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Département des sciences et gestion de l'environnement
Tychon, Bernard ; Université de Liège - ULiège > Département des sciences et gestion de l'environnement > Agrométéorologie (relation agriculture-environ. physique)
Language :
French
Title :
Cinétique de décroissance de la surface verte et estimation du rendement du blé d’hiver
Alternative titles :
[en] Estimating winter wheat yield through the decreasing phase of its green area
Publication date :
June 2012
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Akaike H., 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov B.N. & Csaki F., eds. Second international symposium on information theory. Budapest: Academiai Kiado, 267-281.
Akaike H., 1987. Factor analysis and AIC. Psychometrika, 52(3), 317-332.
Austin P.C. & Tu J.V., 2004. Bootstrap methods for developing predictive models. Am. Stat., 58(2), 131-137.
Baker C.K. & Gallagher J.N., 1983. The development of winter wheat in the feld. 2. The control of primordium initiation rate by temperature and photoperiod. J. Agric. Sci., 101(2), 337-344.
Bannayan M., Crout N.M.J. & Hoogenboom G., 2003. Application of the CERES-Wheat model for within-season prediction of winter wheat yield in the United Kingdom. Agron. J., 95(1), 114-125.
Baret F. & Guyot G., 1986. Radiométrie de la maturation de couverts de blé dans le visible et le proche infra-rouge. Agronomie, 6(6), 509-516.
Baret F. et al., 2010. GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: theoretical considerations based on 3D architecture models and application to wheat crops. Agric. For. Meteorol., 150(11), 1393-1401.
Blandino M. & Reyneri A., 2009. Effect of fungicide and foliar fertilizer application to winter wheat at anthesis on fag leaf senescence, grain yield, four bread-making quality and DON contamination. Eur. J. Agron., 30(4), 275-282.
Borrás L., Maddonni G.A. & Otegui M.E., 2003. Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res., 82(1), 13-26.
Bouman B.A.M., van Keulen H., van Laar H.H. & Rabbinge R., 1996. The 'School of de Wit' crop growth simulation models: a pedigree and historical overview. Agric. Syst., 52(2-3), 171-198.
Bozdogan H., 1987. Model selection and Akaike's Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52(3), 345-370.
Bozdogan H., 2000. Akaike's Information Criterion and recent developments in information complexity. J. Math. Psychol., 44(1), 62-91.
Bréda N.J.J., 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. J. Exp. Bot., 54(392), 2403-2417.
Brisson N. et al., 2003. An overview of the crop model STICS. Eur. J. Agron., 18(3-4), 309-332.
Confalonieri R., Rosenmund A.S. & Baruth B., 2009. An improved model to simulate rice yield. Agron. Sustain. Dev., 29(3), 463-474.
Davidson H.R. & Campbell C.A., 1983. The effect oftemperature, moisture and nitrogen on the rate ofdevelopment of spring wheat as measured by degree. days. Can. J. Plant. Sci., 63(4), 833-846.
Davison A.C. & Hinkley D.V., 1997. Bootstrap methods and their application. New York, USA: Cambridge University Press.
Demarez V. et al., 2008. Estimation of leaf area and clumping indexes of crops with hemispherical photographs. Agric. For. Meteorol, 148(4), 644-655.
Dimmock J.P.R.E. & Gooding M.J., 2002. The effects of fungicides on rate and duration of grain filling in winter wheat in relation to maintenance of fag leaf green area. J. Agric. Sci., 138(1), 1-16.
Doraiswamy P.C. et al., 2007. Operational prediction of crop yields using MODIS data and products. In: Chen J., Saunders S.C., Brosofske K.D. & CrowT.R., eds. International archives of photogrammetry, remote sensing and spatial information, Sciences Special Publications, Commission Working Group VIII WG VIII/10. Ispra, Italy: European Commision DG JRC-Institute for the Protection and Security of the Citizen, 1-5.
Duchemin B., Maisongrande P, Boulet G. & Benhadj I., 2008. A simple algorithm for yield estimates: evaluation for semi-arid irrigated winter wheat monitored with green leaf area index. Environ. Modell. Softw., 23(7), 876-892.
Duthoit S., 2006. Prise en compte de l'agrégation des cultures dans la simulation du transfert radiatif: importance pour l'estimation de l'indice foliaire (LAI), de la parcelle au paysage. Thèse de doctorat: Université Toulouse III, Paul Sabatier (France).
Duveiller G., 2011. Crop specifc green area index retrieval from multi-scale remote sensing for agricultural monitoring. PhD thesis: Université catholique de Louvain (Belgique).
Duveiller G. & Defourny P., 2010a. A conceptual framework to defne the spatial resolution requirements for agricultural monitoring using remote sensing. Remote Sens. Environ., 114(11), 2637-2650.
Duveiller G. et al., 2010b. Exploring the potential of crop specifc green area index time series to improve yield estimation at regional scale. In: SobrinoJ.A., eds. Proceedings of the 3rd International Symposium on Recent Advances in Quantitative Remote Sensing (RAQRS'III), September 27th to October 1st, 2010, Torrent (Valencia). Torrent, Spain: Universitat de Valencia, Servicio de Publicaciones.
Efron B. & Tibshirani R., 1993. An introduction to the E bootstrap. London: Chapman & Hall.
Jarroudi M. et al., 2009. Assessing the accuracy of simulation model for Septoria leaf blotch disease El progress on winter wheat. Plant Dis., 93(10), 983-992.
Jarroudi M. et al., 2010. Modelling plant diseases impact with the Belgian Crop Growth Monitoring System. In: Wery J., Shili-Touzi I. & Perrin A., eds. Proceedings of Agro2010 the XIth ESA Congress, August 29h-September 3rd, 2010, Montpellier, France. Montpellier, France: Agropolis International Editions, 519-520.
Gabrielle B. et al., 1998. A model of leaf area development and senescence for winter oilseed rape. Field Crops Res., 57(2), 209-222.
Glenn E., Huete A., Nagler P. & Nelson S., 2008. Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: what vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136-2160.
Gooding M.J., Dimmock J.P.R.E., France J. & Jones S.A., 2000. Green leaf area decline of wheat fag leaves: the infuence of fungicides and relationships with mean grain weight and grain yield. Ann. Appl. Biol., 136(1), 77-84.
Gower S.T., Kucharik C.J. & Norman J.M., 1999. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems - a real or imaginary problem? Remote Sens. Environ., 70, 29-51.
Guyot G. & Seguin B., 1988. Possibilités d'utilisation de la télédétection satellitaire en agrométéorologie. Agronomie, 8(1), 1-13.
Hosoi F. & Omasa K., 2009. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J. Photogramm. Remote Sens., 64(2), 151-158.
Jonckheere I. et al., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agric. For. Meteorol., 121(1-2), 19-35.
Kouadio L. et al., 2010. Wheat yield estimates at NUTS-3 level using MODIS data: an approach based on the decreasing curves of green area index temporal profles. In: Cawkwell F, ed. Visualising the Earth: from the seabed to the cloud-tops, 1st-3rd September 2010, Cork, Ireland, Nottingham RSPSoc, 214-221.
Kussner R. & Mosandl R., 2000. Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Can. J. For. Res., 30(3), 440-447.
Laguette S., Vidal A. & Vossen P, 1997. Télédétection et estimation des rendements en blé en Europe. Ingénieries -EAT, 12, 19-33.
Lawless C, Semenov M.A. & Jamieson P.D., 2005. A wheat canopy model linking leaf area and phenology. Eur. J. Agron., 22(1), 19-32.
Lebarbier E. & Mary-Huard T., 2004. Le critère BIC: fondements théoriques et interprétation. Rapport de Recherche n°5315. Rocquencourt, France: INRIA.
Lizaso J.I., Batchelor W.D. & Westgate M.E., 2003. A leaf area model to simulate cultivar-specifc expansion and senescence of maize leaves. Field Crops Res., 80(1), 1-17.
Masle J., Doussinault G., Farquhar G.D. & Sun B., 1989. Foliar stage in wheat correlates better to photothermal time than to thermal time. Plant Cell Environ., 12(3), 235-247.
Moulin S., Bondeau A. & Delecolle R, 1998. Combining agricultural crop models and satellite observations: from feld to regional scales. Int. J. Remote Sens., 19(6), 1021-1036.
Neumann H.H., Den Hartog G. & Shaw R.H., 1989. Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agric. For. Meteorol, 45(3-4), 325-345.
Olesen J.E. et al., 2002. Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Res., 74(2-3), 131-149.
Palm R., 2002. Utilisation du bootstrap pour les problèmes statistiques liés a l'estimation des paramètres. Biotechnol. Agron. Soc. Environ., 6(3), 143-153.
Reynolds M.P, Delgado B.M.I., Gutiérrez-Rodríguez M. & Larqué-Saavedra A., 2000. Photosynthesis of wheat in a warm, irrigated environment: I: Genetic diversity and crop productivity. Field Crops Res., 66(1), 37-50.
Richards R.A., 2000. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot., 51(suppl. 1), 447-458.
Sawa T, 1978. Information criteria for discriminating among alternative regression models. Econometrica, 46(6), 1273-1291.
Supit I., 2000. An exploratory study to improve the predictive capacity of the Crop Growth Monitoring System as applied by the European Commission. Heelsum, The Netherlands: Treemail Publishers
Sylvester-Bradley R, Scott R.K. & Wright C.E., 1990. Physiology in the production and improvement of cereals. London: Home Grown Cereals Authority Research. Review No 18.
Thomas H. & Stoddart J.L., 1980. Leaf senescence. Annu. Rev. Plant Physiol, 31(1), 83-111.
van Ittersum M.K. et al., 2003. On approaches and applications of the Wageningen crop models. Eur. J. Agron., 18(3-4), 201-234.
Weiss M. et al., 2004. Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling. Agric. For. Meteorol, 121(1-2), 37-53.
Zadoks J.C., Chang TT & Konzak CF, 1974. A decimal code for the growth stages of cereals. Weed Res., 14(6), 415-421.