combustible; énergie renouvelable; lignocellulose; matière première; chimie verte; fuels; renewable energy; raw materials; green chemistry
Abstract :
[fr] L’augmentation du prix des ressources fossiles, l’incertitude quant à leur disponibilité à long terme et les préoccupations environnementales justifient la recherche de matières premières et de technologies alternatives capables de réduire la dépendance en ces combustibles fossiles et d’atténuer les atteintes à l’environnement, notamment en termes d’émissions de dioxyde de carbone. L’utilisation rationnelle de la biomasse comme substitut au carbone fossile constitue donc un enjeu majeur et est la force motrice du développement des bioraffineries qui auront un rôle important à jouer dans un avenir proche. Une bioraffinerie est une installation qui intègre à la fois les processus de conversion et l’équipement pour produire des carburants,
de l’énergie et des produits à plus haute valeur ajoutée au départ de la biomasse. Dans ce type d’installation, presque tous les types de matières premières végétales peuvent être convertis en biocarburants et en produits biobasés. Cette démarche intègre différentes voies de valorisation, ce qui permet de maximiser les avantages économiques et environnementaux tout en minimisant les déchets et la pollution. L’intégration de la chimie verte et l’utilisation de technologies ayant un impact réduit sur l’environnement dans les bioraffineries permettent d’envisager des chaines de production de biocarburants et de produits chimiques biobasés durables au départ de la biomasse. Actuellement, les bioraffineries vertes, les bioraffineries céréalières, les bioraffineries oléagineuses et les bioraffineries lignocellulosiques sont à la base de nombreux projets de recherche, de développement et de mise en oeuvre industrielle, essentiellement au travers de complexes de bioraffineries intégrées. [en] Because of the price increase of fossil resources, of their uncertain availability and because of environmental concerns, alternative solutions able to mitigate global warming, and reduce the
consumption of fossil fuels and carbon dioxide emissions should be promoted. The replacement of petroleum with biomass as raw material for bioenergy (biofuels, power and heat) and chemical production is an interesting option and is the driving force for the development of biorefinery complexes that will have a critical role to play in our common future. A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, heat and chemicals from biomass. In biorefinery, almost all types of biomass feedstocks can be converted to different classes of biofuels and biochemicals through various processes that maximize economic and environmental benefits, while minimizing waste and pollution. Through the integration of green chemistry into biorefineries, and the use of low environmental impact technologies, future sustainable production chains of biofuels and high value chemicals from biomass can therefore be established. Currently, the green biorefinery, the whole-crop biorefinery, the oilseed biorefinery and the lignocellulosic feedstock biorefinery are favoured in research, development and industrial implementation, essentially through fully integrated biorefinery complexes.
Disciplines :
Chemistry
Author, co-author :
Laurent, Pascal ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Roiz, Julie ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Wertz, Jean-Luc ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Richel, Aurore ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Paquot, Michel ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Language :
French
Title :
Le bioraffinage, une alternative prometteuse à la pétrochimie
Alternative titles :
[en] Biorefining, a promising alternative to petrochemistry.
Publication date :
2011
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Volume :
15
Issue :
4
Pages :
597-610
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Programme d'Excellence TECHNOSE (716757)
Funders :
DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Aden A. et al., 2004. Results of screening for potential candidates from sugars and synthesis gas. In: Werpy T. &. Petersen G., eds. Top value added chemicals from biomass. Vol. I. Oak Ridge, TN, USA: US Department of Energy.
Amidon T.E. et al., 2008. Biorefinery: conversion of woody biomass to chemicals, energy and materials. J. Biobased Mater. Bioenergy, 2(2), 100-120.
Balat M., 2008a. Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energy Sources Part A, 30(7), 620-635.
Balat M., 2008b. Mechanisms of thermochemical biomass conversion processes. Part 2: reactions of gasification. Energy Sources Part A, 30(7), 636-648.
Balat M., 2008c. Mechanisms of thermochemical biomass conversion processes. Part 3: reactions of liquefaction. Energy Sources Part A, 30(7), 649-659.
Bozell J.J., 2008. Feedstocks for the future. Biorefinery production of chemicals from renewable carbon. Clean, 36(8), 641-647.
Bozell J.J. & Petersen G.R., 2010. Technology development for the production of biobased products from biorefinerycarbohydrates-the US Department of Energy's "Top 10" revisited. Green Chem., 12(4), 539-554.
Briens C., Piskorz J. & Berruti F., 2008. Biomass valorization for fuel and chemicals production. A review. Int. J. Chem. Reactor Eng., 6, Article R2.
Carvalheiro F., Duarte L.C. & Girio F.M., 2008. Hemicellulose biorefineries: a review on biomass pretreatments. J. Sci. Ind. Res., 67(11), 849-864.
Cheng S.M. & Zhu S.D., 2009. Lignocellulosic feedstock biorefinery. The future of the chemical and energy industry. Bioresources, 4(2), 456-457.
Cherubini F., 2010. The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage., 51(7), 1412-1421.
Coughlan M.P. & Folan M.A., 1979. Cellulose and cellulase: food for tought, food for the future. Int. J. Biochem., 10(2), 103-108.
Damartzis T. & Zabaniotou A., 2011. Thermochemical conversion of biomass to second generation biofuels through integrated process design. A review. Renewable Sustainable Energy Rev., 15(1), 366-378.
De Wild P.J. et al., 2009. Biomass valorisation by staged degasification. A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass. J. Anal. Appl. Pyrolysis, 85(1-2), 124-133.
Demirbas A., 2009a. Biorefineries: current activities and future developments. Energy Convers. Manage., 50(11), 2782-2801.
Demirbas M.F., 2009b. Biorefineries for biofuel upgrading: a critical review. Appl. Energy, 86, S151-S161.
Demirbas A., 2010a. Biorefinery. In: Biorefineries: for biomass upgrading facilities. London: Springer Verlag, 75-92.
Demirbas A., 2010b. Biorefinery technologies for biomass upgrading. Energy Sources Part A, 32(16), 1547-1558.
Didderen I., Destain J. & Thonart P., 2008. Procédés de bio-conversion en éthanol. In: Le bioéthanol de seconde génération. La production d'éthanol à partir de biomasse lignocellulosique. Gembloux, Belgique: Les Presses Agronomiques de Gembloux, 21-56.
Effendi A., Gerhauser H. & Bridgwater A.V., 2008. Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renewable Sustainable Energy Rev., 12(8), 2092-2116.
Fengel D. & Wegener G., 1984. Wood: chemistry, ultrastructure and reactions. Berlin, Germany: Walter de Gruyter Publisher.
Gama F.M., Teixeira J.A. & Mota M., 1994. Cellulose morphology and enzymatic reactivity: a modified solute exclusion technique. Biotechnol. Bioeng., 43(5), 381-387.
Greenwell H.C. et al., 2010. Placing microalgae on the biofuels priority list: a review of the technological challenges. J. R. Soc. Interface, 7(46), 703-726.
Jacquet N., Vanderghem C., Blecker C. & Paquot M., 2010. La steam explosion: application en tant que prétraitement de la matière lignocellulosique. Biotechnol. Agron. Soc. Environ., 14(S2), 561-566.
Kamm B. & Kamm M., 2004a. Principles of biorefineries. Appl. Microbiol. Biotechnol., 64(2), 137-145.
Kamm B. & Kamm M., 2004b. Biorefinery. Systems. Chem. Biochem. Eng. Q., 18(1), 1-6.
Kamm B., Kamm M., Gruber P.R. & Kromus S., 2006. Biorefinery systems. An overview. In: Kamm B., Gruber P.R. & Kamm M., eds. Biorefineries. Industrial processes and products. Statu quo and future directions. Vol.1. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 3-40.
Kamm B. & Kamm M., 2007a. The concept of biorefinery. Production of platform chemicals and final products. Chem. Ing. Tech., 79(5), 592-603.
Kamm B. & Kamm M., 2007b. International biorefinery systems. Pure Appl. Chem., 79(11), 1983-1997.
Koutinas A., Wang R., Campbell G.M. & Webb C., 2006. A whole crop biorefinery system: a closed system for the manufacture of non-food products. In: Kamm B., Gruber P.R. & Kamm M., eds. Biorefineries. Industrial processes and products. Statu quo and future directions. Vol. 1. Weinheim, Germany: Wiley, 165-192.
Kumar M.N.S., Mohanty A.K., Erickson L. & Misra M., 2009a. Lignin and its applications with polymers. J. Biobased Mater. Bioenergy, 3(1), 1-24.
Kumar P., Barrett D.M., Delwiche M.J. & Stroeve P., 2009b. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48(8), 3713-3729.
Laurent P. et al., 2011. Synthesis and surface-active properties of uronic amide derivatives, surfactants from renewable organic raw materials. J. Surfactants Deterg., 14, 51-63.
Lestari S. et al., 2009. Transforming triglycerides and fatty acids into biofuels. ChemSusChem, 2(12), 1109-1119.
Luo L., van der Voet E. & Huppes G., 2010. Biorefining of lignocellulosic feedstock. Technical, economic and environmental considerations. Bioresour. Technol., 101(13), 5023-5032.
Lyko H., Deerberg G. & Weidener E., 2009. Coupled production in biorefineries. Combined use of biomass as a source of energy, fuels and materials. J. Biotechnol., 142(1), 78-86.
Mandl M.G., 2010. Status of green biorefining in Europe. Biofuels, Bioprod. Biorefin., 4(3), 268-274.
Menrad K., Klein A. & Kurka S., 2009. Interest of industrial actors in biorefinery concepts in Europe. Biofuels, Bioprod. Biorefin., 3(3), 384-394.
Mohan D., Pittman Jr. C.U. & Steele P.H., 2006. Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels, 20, 848-889.
Naik S.N., Goud V.V., Rout P.K. & Dalai A.K., 2010. Production of first and second generation biofuels: a comprehensive review. Renewable Sustainable Energy Rev., 14(2), 578-597.
Richel A. et al., 2010. Microwave-assisted synthesis of D-glucuronic acid derivatives using cost-effective solid acid catalysts. Tetrahedron Lett., 51(10), 1356-1360.
Richel A. et al., 2011. Microwave-assisted conversion of carbohydrates. State of the art and outlook. C.R. Chim., 14, 224-234.
Rinaldi R. & Schuth F., 2009. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem, 2(12), 1096-1107.
Vanderghem C., Boquel P., Blecker C. & Paquot M., 2010. A multistage process to enhance cellobiose production from cellulosic materials. Appl. Biochem. Biotechnol., 160(8), 2300-2307.
Wijffels R.H., Barbosa M.J. & Eppink M.H.M., 2010. Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Biorefin., 4(3), 287-295.
Williams P.R.D., Inman D., Aden A. & Heath G.A., 2009. Environmental and sustainability factors associated with next-generation biofuels: what do we really know? Environ. Sci. Technol., 43(13), 4763-4775.
Wyman C.E., 1994. Alternative fuels from biomass and their impact on carbon dioxide accumulation. Appl. Biochem. Biotechnol., 45/46(1), 897-915.
Zaldivar J., Nielsen J. & Olsson L., 2001. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl. Microbiol. Biotechnol., 56(1-2), 17-34.
Zhang Y.H.P., 2008. Reviving the carbohydrate economy via multi-product lignocellulose biorefinerie. J. Ind. Microbiol. Biotechnol., 35(5), 367-375.