External report (Reports)
Voronoi model learning for batch mode reinforcement learning
Fonteneau, Raphaël; Ernst, Damien
2010
 

Files


Full Text
technical_report.pdf
Author postprint (204.24 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Batch mode reinforcement learning
Abstract :
[en] We consider deterministic optimal control problems with continuous state spaces where the information on the system dynamics and the reward function is constrained to a set of system transitions. Each system transition gathers a state, the action taken while being in this state, the immediate reward observed and the next state reached. In such a context, we propose a new model learning--type reinforcement learning (RL) algorithm in batch mode, finite-time and deterministic setting. The algorithm, named Voronoi reinforcement learning (VRL), approximates from a sample of system transitions the system dynamics and the reward function of the optimal control problem using piecewise constant functions on a Voronoi--like partition of the state-action space.
Disciplines :
Computer science
Author, co-author :
Fonteneau, Raphaël  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Language :
English
Title :
Voronoi model learning for batch mode reinforcement learning
Publication date :
2010
Publisher :
University of Liège
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 18 November 2011

Statistics


Number of views
85 (4 by ULiège)
Number of downloads
96 (2 by ULiège)

Bibliography


Similar publications



Contact ORBi