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Abstract
We consider deterministic optimal control problems with continuous state spaces

where the information on the system dynamics and the reward function is con-
strained to a set of system transitions. Each system transition gathers a state, the
action taken while being in this state, the immediate reward observed and the next
state reached. In such a context, we propose a new model learning–type reinforce-
ment learning (RL) algorithm in batch mode, finite-time and deterministic setting.
The algorithm, named Voronoi reinforcement learning (VRL), approximates from
a sample of system transitions the system dynamics and the reward function of
the optimal control problem using piecewise constant functions on a Voronoi–like
partition of the state-action space.

1 Problem statement
We consider a discrete-time system whose dynamics over T stages is described by a
time-invariant equation

xt+1 = f(xt, ut) t = 0, 1, . . . , T − 1, (1)

where for all t ∈ {0, . . . , T − 1}, the state xt is an element of the bounded normed
state space X ⊂ RdX and ut is an element of a finite action space U =

{
a1, . . . , am

}
with m ∈ N0. x0 ∈ X is the initial state of the system. T ∈ N0 denotes the finite
optimization horizon. An instantaneous reward

rt = ρ(xt, ut) ∈ R (2)

is associated with the action ut ∈ U taken while being in state xt ∈ X . We assume
that the initial state of the system x0 ∈ X is fixed. For a given open-loop sequence of
actions u = (u0, . . . , uT−1) ∈ UT , we denote by Ju(x0) the T−stage return of the
sequence of actions u when starting from x0, defined as follows:

Definition 1.1 (T−stage return)
∀u ∈ UT ,∀x0 ∈ X ,

Ju(x0) =

T−1∑
t=0

ρ(xt, ut) (3)
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with

xt+1 = f(xt, ut),∀t ∈ {0, . . . , T − 1} . (4)

We denote by J∗(x0) the maximal value:

Definition 1.2 (Maximal return)
∀x0 ∈ X ,

J∗(x0) = max
u∈UT

Ju(x0) . (5)

Considering the fixed initial state x0, an optimal sequence of actions u∗(x0) is a se-
quence for which

Ju∗(x0)(x0) = J∗(x0) . (6)

In this report, we assume that the functions f and ρ are unknown. Instead, we know
a sample of n system transitions

Fn =
{(
xl, ul, rl, yl

)}n
l=1

(7)

where for all l ∈ {1, . . . , n}

rl = ρ(xl, ul) (8)

and

yl = f(xl, ul) . (9)

The problem addressed in this report is to compute from the sample Fn, an open-loop
sequence of actions ũ∗Fn

(x0) such that J̃
ũ∗Fn

(x0)

Fn
(x0) is as close as possible to J̃∗Fn

(x0).

2 Model learning–type RL
Model learning–type reinforcement learning aims at solving optimal control problems
by approximating the unknown functions f and ρ and solving the so approximated
optimal control problem instead of the unknown actual optimal control problem. The
values yl (resp. rl) of the function f (resp. ρ) in the state-action points (xl, ul) l =
1 . . . n are used to learn a function f̃Fn (resp. ρ̃Fn ) over the whole space X × U .
The approximated optimal control problem defined by the functions f̃Fn

and ρ̃Fn
is

solved and its solution is kept as an approximation of the solution of the optimal control
problem defined by the actual functions f and ρ.

Given a sequence of actions u ∈ UT and a model learning–type reinforcement
learning algorithm, we denote by J̃u

Fn
(x0) the approximated T−stage return of the

sequence of actions u, i.e. the T−stage return when considering the approximations
f̃Fn

and ρ̃Fn
:

Definition 2.1 (Approximated T−stage return)
∀u ∈ UT ,∀x0 ∈ X

J̃u
Fn

(x0) =

T−1∑
t=0

ρ̃Fn
(x̃t, ut) (10)
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with

x̃t+1 = f̃Fn
(x̃t, ut) , ∀t ∈ {0, . . . , T − 1} (11)

and x̃0 = x0.

We denote by J̃∗Fn
(x0) the maximal approximated T−stage return when starting from

the initial state x0 ∈ X according to the approximations f̃Fn
and ρ̃Fn

:

Definition 2.2 (Maximal approximated T−stage return)
∀x0 ∈ X ,

J̃∗Fn
(x0) = max

u∈UT
J̃u
Fn

(x0) . (12)

Using these notations, model learning–type RL algorithms aim at computing a se-
quence of actions ũ∗Fn

(x0) ∈ UT such that J̃
ũ∗Fn

(x0)

Fn
(x0) is as close as possible (and

ideally equal to) to J̃∗Fn
(x0). These techniques implicitly assume that an optimal policy

for the learned model also leads to high returns on the real problem.

3 The Voronoi Reinforcement Learning algorithm
This algorithm approximates the reward function ρ and the system dynamics f using
piecewise constant approximations on a Voronoi–like [1] partition of the state-action
space (which is equivalent to a nearest-neighbour approximation) and will be referred
to by the VRL algorithm. Given an initial state x0 ∈ X , the VRL algorithm computes
an open-loop sequence of actions which corresponds to an “optimal navigation” among
the Voronoi cells.

Before fully describing this algorithm, we first assume that all the state-action pairs{
(xl, ul)

}n
l=1

given by the sample of transitions Fn are unique, i.e.

∀l, l′ ∈ {1, . . . , n}, (xl, ul) = (xl
′
, ul
′
) =⇒ l = l′ . (13)

We also assume that each action of the action space U has been tried at least once, i.e.,

∀u ∈ U ,∃l ∈ {1, . . . , n}, ul = u . (14)

The model is based on the creation of n Voronoi cells
{
V l
}n
l=1

which define a partition
of size n of the state-action space. The Voronoi cell V l associated to the element
(xl, ul) of Fn is defined as the set of state-action pairs (x, u) ∈ X × U that satisfy:

(i) u = ul , (15)

(ii) l ∈ arg min
l′:ul′=u

{
‖x− xl

′
‖X
}
, (16)

(iii) l = min
l′

{
l′ ∈ arg min

l′:ul′=u

{
‖x− xl

′
‖X
}}

. (17)

One can verify that
{
V l
}n
l=1

is indeed a partition of the state-action space X ×U since
every state-action (x, u) ∈ X × U belongs to one and only one Voronoi cell.

The function f (resp. ρ) is approximated by a piecewise constant function f̃Fn

(resp. ρ̃Fn
) defined as follows:

∀l ∈ {1, . . . , n},∀(x, u) ∈ V l, f̃Fn(x, u) = yl, (18)
ρ̃Fn(x, u) = rl . (19)
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3.1 Open-loop formulation
Using the approximations f̃Fn

and ρ̃Fn
, we define a sequence of approximated optimal

state-action value functions
(
Q̃∗T−t

)T−1
t=0

as follows :

Definition 3.1 (Approximated optimal state-action value functions)
∀t ∈ {0, . . . , T − 1} ,∀(x, u) ∈ X × U ,

Q̃∗T−t(x, u) = ρ̃Fn
(x, u)

+ arg max
u′∈U

Q̃∗T−t−1

(
f̃Fn(x, u), u′

)
, (20)

with

Q∗1(x, u) = ρ̃Fn(x, u), ∀(x, u) ∈ X × U . (21)

Using the sequence of approximated optimal state-action value functions
(
Q̃∗T−t

)T−1
t=0

,
one can infer an open-loop sequence of actions

ũ∗Fn
(x0) = (ũ∗Fn,0(x0), . . . , ũ∗Fn,T−1(x0)) ∈ UT (22)

which is an exact solution of the approximated optimal control problem, i.e. which is
such that

J̃
ũ∗Fn

(x0)

Fn
(x0) = J̃∗Fn

(x0) (23)

as follows:

ũ∗Fn,0(x0) ∈ arg max
u′∈U

Q̃∗T (x̃∗0, u
′) , (24)

and, ∀t ∈ {0, . . . , T − 2} ,

ũ∗Fn,t+1(x0) ∈ arg max
u′∈U

Q̃∗T−(t+1)

(
f̃Fn

(
x̃∗t , ũ

∗
Fn,t(x0)

)
, u′
)

(25)

where

x̃∗t+1 = f̃Fn
(x̃∗t , ũ

∗
Fn,t(x0)),∀t ∈ {0, . . . , T − 1}. (26)

and x̃∗0 = x0.

All the approximated optimal state-action value functions
(
Q̃∗T−t

)T−1
t=0

are piece-
wise constant over each Voronoi cell, a property that can be exploited for computing
them easily as it is shown in Figure 1. The VRL algorithm has linear complexity with
respect to the cardinality n of the sample of system transitions Fn, the optimization
horizon T and the cardinality m of the action space U .

3.2 Closed-loop formulation

Using the sequence of approximated optimal state-action value functions
(
Q̃∗T−t

)T−1
t=0

,
one can infer a closed-loop sequence of actions

ṽ∗Fn
(x0) = (ṽ∗Fn,0(x0), . . . , ṽ∗Fn,T−1(x0)) ∈ UT (27)
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Algorithm 1 The Voronoi Reinforcement Learning (VRL) algorithm. QT−t,l is the
value taken by the function Q̃∗T−t in the Voronoi cell V l.

Inputs: an initial state x0 ∈ X , a sample of transitions Fn =
{(
xl, ul, rl, yl

)}n
l=1

;
Output: a sequence of actions ũ∗Fn

(x0) and J̃∗Fn
(x0) ;

Initialization:
Create a n × m matrix V such that V (i, j) contains the index of the Voronoi cell
(VC) where

(
f̃Fn(xi, ui), aj

)
lies ;

for i = 1 to n do
Q1,i ← ri ;

end for
Algorithm:
for t = T − 2 to 0 do

for i = 1 to n do
l← arg max

l′∈{1,...,m}

{
QT−t−1,V (i,l′)

}
;

QT−t,i ← ri +QT−t−1,V (i,l) ;
end for

end for
l← arg max

l′∈{1,...,m}
QT,i′ where i′ denotes the index of the VC where (x0, a

l′) lies ;

l∗0 ← index of the VC where (x0, a
l) lies ;

J̃∗Fn
(x0)← QT,l∗0 ;

i← l∗0 ;
ũ∗Fn,0

(x0)← ul
∗
0 ;

for t = 0 to T − 2 do
l∗t+1 ← arg max

l′∈{1,...,m}

{
QT−t−1,V (i,l′)

}
;

ũ∗Fn,t+1(x0)← al
∗
t+1 ;

i← V (i, l∗t+1) ;
end for
Return: ũ∗Fn

(x0) = (ũ∗Fn,0
(x0), . . . , ũ∗Fn,T−1(x0)) and J̃∗Fn

(x0).

5



by replacing the approximated system dynamics f̃Fn
with the true system dynamics in

Equations (24), (25) and (26) as follows:

ṽ∗Fn,0(x0) = arg max
v′∈U

Q̃∗T (x̃∗0, v
′) ,

and, ∀t ∈ {0, . . . , T − 2} ,

ṽ∗Fn,t+1(x0) = arg max
v′∈U

Q̃∗T−(t+1)

(
f
(
x̃∗t , ṽ

∗
Fn,t(x0)

)
, v′
)

where

x̃∗t+1 = f(x̃∗t , ṽ
∗
t,Fn

(x0)),∀t ∈ {0, . . . , T − 1}. (28)

and x̃∗0 = x0.

4 Theoretical analysis of the VRL algorithm
We propose to analyze the convergence of the Voronoi RL algorithm when the func-
tions f and ρ are Lipschitz continuous and the sparsity of the sample of transitions
decreases towards zero. We first assume the Lipschitz continuity of the functions f and
ρ :

Assumption 4.1 (Lipschitz continuity of f and ρ)

∃Lf , Lρ > 0 : ∀u ∈ U ,∀x, x′ ∈ X ,
‖f(x, u)− f(x′, u)‖X ≤ Lf‖x− x′‖X , (29)
|ρ(x, u)− ρ(x′, u)| ≤ Lρ‖x− x′‖X . (30)

For each action u ∈ U , we denote by fu (resp. ρu) the restrictions of the function f
(resp. ρ) to the action u:

∀u ∈ U ,∀x ∈ X , fu(x) = f(x, u) , (31)
ρu(x) = ρ(x, u) . (32)

All the functions {fu}u∈U and {ρu}u∈U are thus also Lipschitz continuous. Given a
sample of system transitions Fn, and given an action u ∈ U , we also introduce the
restrictions of the function f̃Fn,u and ρ̃Fn,u as follows:

∀u ∈ U ,∀x ∈ X , f̃Fn,u(x) = f̃Fn
(x, u) , (33)

ρ̃Fn,u(x) = ρ̃Fn
(x, u) . (34)

Given a Voronoi cell V l l ∈ {1, . . . , n}, we denote by ∆l
Fn

the radius of the Voronoi–
like cell V l defined as follows :

Definition 4.2 (Radius of Voronoi cells)
∀l ∈ {1, . . . , n},

∆l
Fn

= sup
(x,ul)∈V l

∥∥x− xl∥∥X . (35)
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We then introduce the sparsity of the sample of transitions Fn, denoted by αFn
:

Definition 4.3 (Sparsity of Fn)

αFn
= max
l∈{1,...,n}

∆l
Fn
. (36)

The sparsity of the sample of system transitions Fn can be seen, in a sense, as the
“maximal radius” of all Voronoi cells. We suppose that a sequence of sample of tran-
sitions (Fn)∞n=n0

(with n0 ≥ m) is known, and we assume that the corresponding
sequence of sparsities (αFn)∞n=n0

converges towards zero.

4.1 Consistency of the open-loop VRL algorithm
To each sample of transitions Fn are associated two piecewise constant approximated
functions f̃Fn

and ρ̃Fn
, and a sequence of actions ũ∗Fn

(x0) computed using the VRL
algorithm which is a solution of the approximated optimal control problem defined by
the functions f̃Fn and ρ̃Fn . We have the following theorem:

Theorem 4.4 (Consistency of the Voronoi RL algorithm)
∀x0 ∈ X ,

lim
n→∞

J ũ∗Fn
(x0)(x0) = J∗(x0) . (37)

Before giving the proof of Theorem 4.4, let us first introduce a few lemmas.

Lemma 4.5 (Uniform convergence of f̃Fn,u and ρ̃Fn,u towards fu and ρu)

∀u ∈ U , lim
n→∞

sup
x∈X

∥∥∥fu(x)− f̃Fn,u(x)
∥∥∥
X

= 0 , (38)

lim
n→∞

sup
x∈X
|ρu(x)− ρ̃Fn,u(x)| = 0 . (39)

Proof. Let u ∈ U , let x ∈ X , and let V l be the Voronoi cell where (x, u) lies (then,
u = ul). One has

f̃Fn,u(x) = yl , (40)
ρ̃Fn,u(x) = rl . (41)

which implies that ∥∥∥f̃Fn,u(x)− fu(xl)
∥∥∥
X

= 0 , (42)∣∣ρ̃Fn,u(x)− ρu(xl)
∣∣ = 0 . (43)

Then, ∥∥∥fu(x)− f̃Fn,u(x)
∥∥∥
X
≤

∥∥fu(x)− fu(xl)
∥∥
X

+
∥∥∥fu(xl)− f̃Fn,u(x)

∥∥∥
X

(44)

≤ Lf
∥∥x− xl∥∥X + 0 (45)

≤ Lf∆l
Fn

(46)
≤ LfαFn

, (47)

and similarly for the functions ρu and ρ̃Fn,u,

|ρu(x)− ρ̃Fn,u(x)| ≤ LραFn . (48)

This ends the proof since αFn
→ 0.
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Lemma 4.6 (Uniform convergence of the sum of functions)
Let (hn : X → R)n∈N (resp. (h′n : X → R)n∈N) be a sequence of functions that uni-
formly converges towards h : X → R (resp. h′ : X → R). Then, the sequence of
functions ((hn + h′n) : X → R)n∈N uniformly converges towards the function (h+h′).

Proof. Let ε > 0. Since (hn)n∈N uniformly converges towards h, there exists nh ∈ N
such that

∀n ≥ nh,∀x ∈ X , |hn(x)− h(x)| ≤ ε

2
. (49)

Since (h′n)n∈N uniformly converges towards h′, there exists nh′ ∈ N such that

∀n ≥ nh′ ,∀x ∈ X , |h′n(x)− h′(x)| ≤ ε

2
. (50)

We denote by nmax = max(nh, nh′). One has
∀n ≥ nmax,∀x ∈ X ,

|(hn(x)− h′n(x))− (h(x) + h′(x))| ≤ |hn(x)− h(x)|+ |h′n(x)− h′(x)|
(51)

≤ ε

2
+
ε

2
(52)

≤ ε , (53)

which ends the proof.

Lemma 4.7 (Uniform convergence of composed functions)

• Let (gn : X → X )n∈N be a sequence of functions that uniformly converges to-
wards g : X → X ;

• Let (g′n : X → X )n∈N be a sequence of functions that uniformly converges to-
wards g′ : X → X . Let us assume that g′ is Lg′−Lipschitzian;

• Let (hn : X → R)n∈N be a sequence of functions that uniformly converges to-
wards h : X → R. Let us assume that h is Lh−Lipschitzian.

Then,

• The sequence of functions (g′n ◦ gn)n∈N uniformly converges towards the func-
tion g′ ◦ g.

• The sequence of functions (hn ◦ gn)n∈N uniformly converges towards the func-
tion h ◦ g,

where the notation hn ◦ gn (resp. g′n ◦ g, h ◦ g and g′ ◦ g) denotes the mapping
x→ hn (gn(x)) (resp. x→ g′n(gn(x)), x→ h(g(x)) and x→ g′(g(x)) ).

Proof. Let us prove the second bullet. Let ε > 0. Since (gn)n∈N uniformly converges
towards g, there exists ng ∈ N such that

∀n ≥ ng,∀x ∈ X , ‖gn(x)− g(x)‖X ≤
ε

2Lh
. (54)
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Since (hn)n∈N uniformly converges towards h, there exists nh ∈ N such that

∀n ≥ nh,∀x ∈ X , |hn(x)− h(x)| ≤ ε

2
. (55)

We denote by nh◦g = max(nh, ng). One has
∀n ≥ nh◦g,∀x ∈ X ,

|hn(gn(x))− h(g(x))| ≤ |hn(gn(x))− h(gn(x))|+ |h(gn(x))− h(g(x))|
(56)

≤ ε

2
+ Lh‖gn(x)− g(x)‖X (57)

≤ ε

2
+ Lh

ε

2Lh
(58)

≤ ε, (59)

which proves that the sequence of functions (hn ◦ gn)n uniformly converges towards
h ◦ g.

Lemma 4.8 (Convergence of J̃u
Fn

(x0) towards Ju(x0) ,∀u ∈ UT )
∀u ∈ UT ,∀x0 ∈ X ,

lim
n→∞

∣∣∣J̃u
Fn

(x0)− Ju(x0)
∣∣∣ = 0 . (60)

Proof. Let u ∈ UT be a fixed sequence of actions. For all n ∈ N, n ≥ n0 the function
J̃u
Fn

: X → R can be written as follows :

J̃u
Fn

= ρ̃Fn,u0
+ ρ̃Fn,u1

◦ f̃Fn,u0

+ . . .

+ ρ̃Fn,T−1 ◦ f̃Fn,uT−2
◦ . . . ◦ f̃Fn,u0

. (61)

Since all the functions {ρ̃Fn,ut}0≤t≤T−1 and
{
f̃Fn,ut

}
0≤t≤T−1

uniformly converge

towards the functions {fut
}0≤t≤T−1 and {ρut

}0≤t≤T−1, respectively, and since all
the functions {fut}0≤t≤T−1 and {ρut}0≤t≤T−1 are Lipschitz continuous, Lemma 4.6
and Lemma 4.7 ensure that the function x0 → J̃u

Fn
(x0) uniformly converges to the

function x0 → Ju(x0). This implies the convergence of the sequence
(
J̃u
Fn

(x0)
)
n∈N

towards Ju(x0), for any sequence of actions u ∈ UT , and for any initial state x0 ∈ X .

Proof of Theorem 4.4. Let us proof Equation 37. Let u∗(x0) be an optimal sequence
of actions, and

(
ũ∗Fn

(x0)
)
n∈N be a sequence of sequence of actions computed by the

Voronoi RL algorithm. Each sequence of actions ũ∗Fn
(x0) is optimal with respect to

the approximated model defined by the approximated functions f̃Fn
and ρ̃Fn

. One then
has

∀n ≥ m,∀u ∈ UT , J̃ ũ∗Fn
(x0)

Fn
(x0) ≥ J̃u

Fn
(x0) . (62)

The previous inequality is also valid for the sequence of actions u∗(x0):

∀n ≥ m, J̃ ũ∗Fn
(x0)

Fn
(x0) ≥ J̃u∗(x0)

Fn
(x0) . (63)
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Then, ∀n ≥ m,

J̃
ũ∗Fn

(x0)

Fn
(x0)− J ũ∗Fn

(x0)(x0) + J ũ∗Fn
(x0)(x0)

≥ J̃u∗(x0)
Fn

(x0)− Ju∗(x0)(x0) + Ju∗(x0)(x0) . (64)

According to Lemma 4.8, one can write

lim
n→∞

J̃
ũ∗Fn

(x0)

Fn
(x0)− J ũ∗Fn

(x0)(x0) = 0 , (65)

lim
n→∞

J̃
u∗(x0)
Fn

(x0)− Ju∗(x0)(x0) = 0 . (66)

which leads to

lim
n→∞

J ũ∗Fn
(x0)(x0) ≥ lim

n→∞
Ju∗(x0)(x0) = J∗(x0) . (67)

On the other hand, since u∗(x0) is an optimal sequence of actions, one has

∀n ∈ N0, J
ũ∗Fn

(x0)(x0) ≤ Ju∗(x0)(x0) = J∗(x0) , (68)

which leads to

lim
n→∞

J ũ∗Fn
(x0)(x0) ≤ J∗(x0) . (69)

Equations 67 and 69 allow to conclude the proof:

lim
n→∞

J ũ∗Fn
(x0)(x0) = J∗(x0) . (70)
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