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Abstract

We consider deterministic optimal control problems with continuous state spaces
where the information on the system dynamics and the reward function is con-
strained to a set of system transitions. Each system transition gathers a state, the
action taken while being in this state, the immediate reward observed and the next
state reached. In such a context, we propose a new model learning—type reinforce-
ment learning (RL) algorithm in batch mode, finite-time and deterministic setting.
The algorithm, named Voronoi reinforcement learning (VRL), approximates from
a sample of system transitions the system dynamics and the reward function of
the optimal control problem using piecewise constant functions on a Voronoi—like
partition of the state-action space.

1 Problem statement

We consider a discrete-time system whose dynamics over 1" stages is described by a
time-invariant equation

xt+1:f(xtaut) t20717"'7T_1a (D
where for all ¢ € {0,...,7 — 1}, the state x; is an element of the bounded normed
state space X C R and uy is an element of a finite action space U = {al, R am}

with m € Ng. ¢ € X is the initial state of the system. 7' € Ny denotes the finite
optimization horizon. An instantaneous reward

re = p(zy,ue) €R )

is associated with the action u; € U taken while being in state z; € X. We assume
that the initial state of the system xy € X is fixed. For a given open-loop sequence of
actions u = (uo,...,ur—_1) € UT, we denote by J(z) the T—stage return of the
sequence of actions u when starting from z¢, defined as follows:

Definition 1.1 (7'—stage return)
YueUT Vo € X,

T
J% (o) = p(xe, ug) (3)
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with
xt_;,_l:f(xt,ut),VtE{0,...,T71}. (4)
We denote by J* () the maximal value:

Definition 1.2 (Maximal return)
Vxg € X,

J*(z9) = max J"(xo) . )
DISZEN
Considering the fixed initial state xo, an optimal sequence of actions u*(z¢) is a se-
quence for which

JW @) (50} = J* (o) . (6)

In this report, we assume that the functions f and p are unknown. Instead, we know
a sample of n system transitions

Fn = {(ml,ul,rl,yl)};;l @)
where for all [ € {1,...,n}
rt = p(ml,ul) (8)

and
y = f(ah,uh). 9)

The problem addressed in this report is to compute from the sample F,,, an open-loop

(xO)(

sequence of actions @’ (zo) such that j;_f » o) is as close as possible to .J * (20).

2 Model learning-type RL

Model learning—type reinforcement learning aims at solving optimal control problems
by approximating the unknown functions f and p and solving the so approximated
optimal control problem instead of the unknown actual optimal control problem. The
values y' (resp. r') of the function f (resp. p) in the state-action points (z!,u!) 1 =
1...n are used to learn a function fr, (resp. pr,) over the whole space X' x U.
The approximated optimal control problem defined by the functions f}-n and pr, is
solved and its solution is kept as an approximation of the solution of the optimal control
problem defined by the actual functions f and p.

Given a sequence of actions u € U7 and a model learning—type reinforcement
learning algorithm, we denote by j}_n (zo) the approximated T'—stage return of the
sequence of actions u, i.e. the T'—stage return when considering the approximations

fF, and pr,:

Definition 2.1 (Approximated 7'—stage return)
Yue Ul Yoy e X

T
JE (w0) = pr, (T4, ur) (10)
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with
Foo1 = fr, (F,u), VE€{0,..., T -1} (11)

and Ty = xg.
We denote by j} (o) the maximal approximated T'—stage return when starting from
the initial state o € A according to the approximations f 7, and pr, :
Definition 2.2 (Maximal approximated 7'—stage return)
Vg € X,
Ji (x0) = max J% (x0) . 12

7, (x0) = max J, (xo) (12)
Using these notations, model learning—type RL algorithms aim at computing a se-
quence of actions @._(zo) € UT such that j;F “(xn)(mo) is as close as possible (and
ideally equal to) to j} (z0). These techniques implicitly assume that an optimal policy
for the learned model also leads to high returns on the real problem.

3 The Voronoi Reinforcement Learning algorithm

This algorithm approximates the reward function p and the system dynamics f using
piecewise constant approximations on a Voronoi-like [1] partition of the state-action
space (which is equivalent to a nearest-neighbour approximation) and will be referred
to by the VRL algorithm. Given an initial state zo € X', the VRL algorithm computes
an open-loop sequence of actions which corresponds to an “optimal navigation” among
the Voronoi cells.

Before fully describing this algorithm, we first assume that all the state-action pairs
{(l‘l, ul) }721 given by the sample of transitions F,, are unique, i.e.

VLU e {1,...,n}, (a"u) = (a5 0 = 1=1". (13)
We also assume that each action of the action space ¢/ has been tried at least once, i.e.,
Vuel,3le{l,...,n}u =u. (14)

The model is based on the creation of n Voronoi cells { '} " | which define a partition
of size n of the state-action space. The Voronoi cell V! associated to the element
(2!, ul) of F,, is defined as the set of state-action pairs (z,u) € X x U that satisfy:

(@) u=u', (15)
(i1) lEargmin{Hx—xl/Hx} ) (16)
Il =u
(ii7) l:min{l' € argmin{”x—xllﬂx}}. (17)
v 1wl =u

One can verify that {Vl }ln:l is indeed a partition of the state-action space X x U since
every state-action (x,u) € X x U belongs to one and only one Voronoi cell.

The function f (resp. p) is approximated by a piecewise constant function f]—'”
(resp. pr, ) defined as follows:

Vie{l,...,n}V(x,u) €V fr(zu) = 4, (18)
pF,(wu) = ol (19)



3.1 Open-loop formulation
Using the approximations f 7, and pr, , we define a sequence of approximated optimal

~ T-1
state-action value functions (Q*Tft) as follows :
t=0

Definition 3.1 (Approximated optimal state-action value functions)
vte {0,..., T —1},V(z,u) € X xU ,

Qr—i(w,u) = pr,(z,u)
+ argmax Q4 _, , (f]-‘n (z,u), u') , (20)
u' €U
with
QT(JC’/U’) :ﬁ}‘n(ﬂf,u), V(.I‘,U) EX XU. 21
- T-1
Using the sequence of approximated optimal state-action value functions (Qi}ft) ,
t=0
one can infer an open-loop sequence of actions
%, (20) = (@%, o(0), .., U, 71(20)) €UT (22)

which is an exact solution of the approximated optimal control problem, i.e. which is
such that

T3 (2g) = T3 (o) 23)
as follows:
i, 0(x0) € argmex Q5 u), (24)
and,Vt € {0,...,T — 2},
U%, 141(20) € arl%gl/{ax Q}_(H_l) (f].-n (i;‘,ﬁ;—mt(:co)) ,u/> (25)
where
By = fr, (3, 0%, 1 (20)),Vt €{0,..., T — 1}, (26)

and Z§ = xo.
. . . . I~y T_l .
All the approximated optimal state-action value functions (Q*Tft) are piece-
t=0

wise constant over each Voronoi cell, a property that can be exploited for computing
them easily as it is shown in Figure 1. The VRL algorithm has linear complexity with
respect to the cardinality n of the sample of system transitions F,,, the optimization
horizon T" and the cardinality m of the action space Uf.

3.2 Closed-loop formulation

~ T—1
Using the sequence of approximated optimal state-action value functions (Q}_t) ,

t=0
one can infer a closed-loop sequence of actions

Vi, (@0) = (0%, o(0), - - U5, 11 (20)) €U @7



Algorithm 1 The Voronoi Reinforcement Learning (VRL) algorithm. Qr_.; is the
value taken by the function Q% _, in the Voronoi cell V.

Inputs: an initial state zo € X, a sample of transitions JF,, = {(a:l, ul,rl, yl) }Zn:l ;
Output: a sequence of actions G’ (zo) and J 7 (20) 3
Initialization:
Create a n X m matrix V' such that V (4, j) contains the index of the Voronoi cell
(VC) where (f}-n (xt, ut), aj> lies ;
fori=1tondo
Qi1
end for
Algorithm:
fort=T—-2to0do
fori =1tondo

[ + argmax {QT—t—Lv(i,u)} ;
l/e{l,...,m}
Qr—ti <1 +Qr_t—1,v@ s
end for
end for

l + argmax Qr where i’ denotes the index of the VC where (o, al/) lies ;
ref{l,...,m}

I +— index of the VC where (zo, a') lies ;
J5x (w0) + Qs s

i 15

@, o(wo) = uld;
fort =0to T — 2 do

lf41 + argmax {QTftfl,V(i}l’)}§
Ue{l,....,m}

Wk, 11 (20) = alin s

= V(i)
end for ~
Return: 0% (z0) = (4%, o(20),--.,U%, 7 1(x0)) and J% (70).




by replacing the approximated system dynamics f 7, with the true system dynamics in
Equations (24), (25) and (26) as follows:

Bolr0) = argmasx Q3(55,)
v

and,Vt € {0,...,T — 2},

U, 141(@0) = arlglglax Q;‘—(tJrl) (f (i“:»f}jfn,t(fo)) ,U/)
where
Ty = f(@, 0 £, (v0)), YVt €{0,..., T — 1}. (28)

and Zj = x¢.

4 Theoretical analysis of the VRL algorithm

We propose to analyze the convergence of the Voronoi RL algorithm when the func-
tions f and p are Lipschitz continuous and the sparsity of the sample of transitions
decreases towards zero. We first assume the Lipschitz continuity of the functions f and

p:
Assumption 4.1 (Lipschitz continuity of f and p)

3Ly, L, >0:Yu e U,Vz,z' € X,
|f(z,u) = f(z",u)|lx < Lyllo—2'|x, (29)
p(z,u) —p(a’,w)] < Lpllr —2'||x . (30)

For each action u € U, we denote by f, (resp. p,) the restrictions of the function f
(resp. p) to the action w:

VueUVr € X, fu(z) = f(z,u), 31)
pu(z) = plz,u). (32)
All the functions { fu},c;, and {pu},, are thus also Lipschitz continuous. Given a

sample of system transition§ Fn, and given an action v € U, we also introduce the
restrictions of the function fz, , and gz, , as follows:

YueU Ve € X, fr,u(z) = fr(zu), (33)
prou() = pr,(,u). (34)
Given a Voronoi cell V! [ € {1,...,n}, we denote by Alfn the radius of the Voronoi—

like cell V' defined as follows :

Definition 4.2 (Radius of Voronoi cells)
vie{l,...,n},
Al}-n = sup Hx —x
(z,ut)eVit

ZHX ) (35)



We then introduce the sparsity of the sample of transitions F,,, denoted by o :
Definition 4.3 (Sparsity of F,,)

l
arF, = max A% . 36
P T e n Fn (36)
The sparsity of the sample of system transitions J,, can be seen, in a sense, as the
“maximal radius” of all Voronoi cells. We suppose that a sequence of sample of tran-
sitions (Fy,)nL,,, (With ng > m) is known, and we assume that the corresponding
sequence of sparsities (ar, )pZ,,, converges towards zero.

4.1 Consistency of the open-loop VRL algorithm

To each sample of transitions F,, are associated two piecewise constant approximated
functions fr, and jr, , and a sequence of actions @’ (o) computed using the VRL
algorithm which is a solution of the approximated optimal control problem defined by
the functions f 7, and pr, . We have the following theorem:

Theorem 4.4 (Consistency of the Voronoi RL algorithm)
Vrg € X,

lim J%%a () (2:0) = J* (o) . (37)

n—oo

Before giving the proof of Theorem 4.4, let us first introduce a few lemmas.

Lemma 4.5 (Uniform convergence of f r vand pr ., towards f, and p,,)

ns ns

Yuel, lim  sup ||fu(x) — f]:nu(x)H =0, (38)
n—oo TEX X
lim  sup pu () — firyle) =0 (39)

n—oo reX

Proof. Let u € U, let z € X, and let V! be the Voronoi cell where (z,u) lies (then,
u = u'). One has

frou(z) =y, (40)
pF, ulz) =1l (4D
which implies that
|7t = e = 0, “2)
|67, (@) = pula)] = 0. 43)
Then,
fol@) = Fra@)| < [ful@) = fula))] 4
+ |feh - i@, (44)
< LfHac—a:lHX—FO 45)
< LyAF, (46)
< Lyag,, (47
and similarly for the functions p,, and px, 4,
|pu() — P, u(2)| < Lyar, . (48)
This ends the proof since ar, — 0. ]



Lemma 4.6 (Uniform convergence of the sum of functions)

Let (hy, : X = R), oy (resp. (h;, : X = R), o) be a sequence of functions that uni-
formly converges towards h : X — R (resp. h' : X — R). Then, the sequence of
functions ((hn + hy,) : X — R), . uniformly converges towards the function (h+h').

Proof. Let ¢ > 0. Since (h,),, . uniformly converges towards h, there exists nj, € N
such that

Y > np, Ve € X, |ha(2) — h(z)| < % . 49)
Since (h;,),,cy uniformly converges towards h’, there exists 75 € N such that
Yn > np, Vo € X, B (z) — B (2)] < g . (50)

We denote by nmax = max(np, ny ). One has
VN > Npax, V& € X,

|(hn () = Dy (2)) = (A(x) + W'(2))] < [hn(@) = B(@)] + Dy (2) = B ()]

(5D
€ €
< — 4= 52
< 5+3 (52)
< e, (53)
which ends the proof. n

Lemma 4.7 (Uniform convergence of composed functions)

o Let (g : X = X)),y
wards g : X — X;

be a sequence of functions that uniformly converges to-

o Let (g, : X = X), oy be a sequence of functions that uniformly converges to-
wards g : X — X. Let us assume that g is Ly —Lipschitzian;

e Let (hy : X = R), oy be a sequence of functions that uniformly converges to-
wards h : X — R. Let us assume that h is Ly—Lipschitzian.

Then,

e The sequence of functions (g;, © gn),, cy Uniformly converges towards the func-
tion g’ o g.

e The sequence of functions (hy © gn),,cy uniformly converges towards the func-
tion h o g,

where the notation h,, o g, (resp. g, o g, ho g and g o g) denotes the mapping
T = hn (gn(x)) (resp. = g, (gn(2)), © — h(g(x)) and x — g'(9(x)) ).

Proof. Let us prove the second bullet. Let ¢ > 0. Since (g, ), oy uniformly converges
towards g, there exists n, € N such that

€

Vn > ng, Vo € X, ||gn(x) — g(2)l 4 < 57— -
2L,

(54)



Since (hy,),, o uniformly converges towards h, there exists nj, € N such that

¥n > np, Vo € X, [hn(x) — h(z)| < = . (55)

[NCN o)

We denote by 1404 = max(ns, ng). One has
Vn > Nhog, Vo € X,

(g (@) = Bg(@D] < [halgn(@)) = hlga(@))| + |h(ga(@)) — hlg(a))
(56)

< 5+ Lullgn(@) — g(@)llx (57)

< gt (58)

< 6 (59)

which proves that the sequence of functions (A, © gy,),, uniformly converges towards
hog. ]

Lemma 4.8 (Convergence of ij_n (7o) towards J% (o) ,vyu € UT)
vu e UT Vxy € X,

lim  [J% (z0) — J%(w0)| = 0. (60)

n—oo

Proof. Letu € UT be a fixed sequence of actions. For all n € N, n > ng the function
JE X — Rcan be written as follows :

J;n = ﬁ]:ruuo +ﬁ]:nvu1 Of]:nyu[)
+
T PF 10 fFiur 20 O fFu g - Q)
Since all the functions {p7, u, }q<;<r_; and { f ].‘r“ut} e uniformly converge
st 0<t<T—1

towards the functions {fy, }y<;<r_; and {pu, }o<;<r_;» respectively, and since all
the functions { fu, }g<;<7_; and {pu, }g<;<7_, are Lipschitz continuous, Lemma 4.6

and Lemma 4.7 ensure that the function g — j}‘—_n (o) uniformly converges to the

function z9 — J"(z¢). This implies the convergence of the sequence <j}‘_- (xo)) .
" ne

towards J%(z¢), for any sequence of actions u € U7, and for any initial state o € X.
|

Proof of Theorem 4.4. Let us proof Equation 37. Let u*(x) be an optimal sequence
of actions, and (ﬁ*fn (mo))neN be a sequence of sequence of actions computed by the
Voronoi RL algorithm. Each sequence of actions @1 () is optimal with respect to

the approximated model defined by the approximated functions f 7, and pr,, . One then
has

Vn > m,Yu e U’ j;*f“(zo)(xo) > j}f—n (z9) . (62)

The previous inequality is also valid for the sequence of actions u*(z):

Vn > m, j;]r“ (IO)(xO) > j;*(x(’)(xo) . (63)

n



Then, Vn > m,

TErn00) () — 5 50) () - T (%0) ()
> T 00 () — g 00) () 4 T %0 () (64)

According to Lemma 4.8, one can write

lim T 0 () — J8a (00) (30) = 0, (65)
Jn T3 O (g) = 1 0) (20) = 0. (66)
which leads to
lim J%%%0) (20) > lim J% &0)(20) = J*(x) . (67)
n—oo n—oo

On the other hand, since u*(xg) is an optimal sequence of actions, one has

Vn € No, J%a0) (z) < J*0) (zg) = J*(x0) , (68)
which leads to
lim J%%n 30) (20) < J*(x) . (69)
n— oo

Equations 67 and 69 allow to conclude the proof:

lim J %% (0) () = J*(20) . (70)

n—oo
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