[en] Groundwater flow and contaminant transport modelling in karst systems remains a challenge because of the complexity of the geology made of caves, voids, conduits of various sizes and forms and interacting matrix. Such heterogeneous structures cause complex hydraulic conditions for groundwater flow and transport processes. Despite the progresses in field investigation techniques and experiments, detailed knowledge and characterization of the karst system geometry and connectivity remains inaccessible and pragmatic modelling approaches have to be used.
Groundwater models of different complexities have been developed for karst systems, ranging from transfer functions and linear reservoir models to spatially distributed models. Here, a new flexible modelling approach, the Hybrid Finite-Element Mixing-Cell method (HFEMC), has been developed that allows combining in a single model, and in a fully interacting way, different mathematical approaches of various complexities for groundwater modelling in complex environments. This includes linear reservoirs, distributed reservoirs, groundwater flow in variably saturated equivalent porous media, with possibilities to consider by-pass flows along preferential flow paths, internal boundary conditions between the karstic features and the surrounding rock mass matrix background and drainage by surface waters. This method has been implemented in the groundwater flow and solute transport numerical code SUFT3D.
The objective of this communication is to present the modelling concepts and to discuss the potentials and advantages of the HFEMC method for modelling groundwater flow in karst systems over existing more classical modelling approaches. The discussion is supported by illustrative “synthetic” examples representative of karst systems and a real modelling application to the case of groundwater rebound and water inrush in a closed underground coal mine which presents a very similar geometrical and hydrological context to a karst, with cavities, drains and interacting rock mass.
Research Center/Unit :
Aquapôle - ULiège
Disciplines :
Geological, petroleum & mining engineering
Author, co-author :
Brouyère, Serge ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Wildemeersch, Samuel ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Orban, Philippe ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement
Leroy, Mathieu ; Université de Liège - ULiège > Département Argenco : Secteur GEO3 > Hydrogéologie & Géologie de l'environnement