Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channel
Seutin, Vincent ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Pharmacologie
Liégeois, Jean-François ; Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Marrion, Neil
Language :
English
Title :
Crucial role of a shared extracellular loop in apamin sensitivity and maintenance of pore shape of small-conductance calcium-activated potassium (SK) channel
Publication date :
2011
Journal title :
Proceedings of the National Academy of Sciences of the United States of America
ISSN :
0027-8424
eISSN :
1091-6490
Publisher :
National Academy of Sciences, Washington, United States - District of Columbia
Sailer CA, et al. (2002) Regional differences in distribution and functional expression of small-conductance Ca 2+-activated K + channels in rat brain. J Neurosci 22:9698-9707.
Sailer CA, Kaufmann WA, Marksteiner J, Knaus HG (2004) Comparative immunohistochemical distribution of three small-conductance Ca 2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol Cell Neurosci 26:458-469.
Stocker M, Pedarzani P (2000) Differential distribution of three Ca( 2+)-activated K( +) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol Cell Neurosci 15:476-493.
van der Staay FJ, Fanelli RJ, Blokland A, Schmidt BH (1999) Behavioral effects of apamin, a selective inhibitor of the SK( Ca)-channel, in mice and rats. Neurosci Biobehav Rev 23:1087-1110.
Benton DC, et al. (2003) Small conductance Ca 2+-activated K + channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. J Physiol 553(Pt 1):13-19.
Köhler M, et al. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273:1709-1714. (Pubitemid 26317786)
Lamy C, et al. (2010) Allosteric block of K Ca2 channels by apamin. J Biol Chem 285:27067-27077.
Nolting A, Ferraro T, D'hoedt D, Stocker M (2007) An amino acid outside the pore region influences apamin sensitivity in small conductance Ca 2+-activated K + channels. J Biol Chem 282:3478-3486.
Weatherall KL, Goodchild SJ, Jane DE, Marrion NV (2010) Small conductance calcium-activated potassium channels: From structure to function. Prog Neurobiol 91:242-255.
Grunnet M, et al. (2001) Pharmacological modulation of SK3 channels. Neuropharmacology 40:879-887. (Pubitemid 32510801)
D'hoedt D, Hirzel K, Pedarzani P, Stocker M (2004) Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J Biol Chem 279:12088-12092.
Corrêa SA, Müller J, Collingridge GL, Marrion NV (2009) Rapid endocytosis provides restricted somatic expression of a K+ channel in central neurons. J Cell Sci 122:4186-4194.
Ishii TM, Maylie J, Adelman JP (1997) Determinants of apamin and d-tubocurarine block in SK potassium channels. J Biol Chem 272:23195-23200. (Pubitemid 27392452)
Goodchild SJ, Lamy C, Seutin V, Marrion NV (2009) Inhibition of K( Ca)2.2 and K(C a)2.3 channel currents by protonation of outer pore histidine residues. J Gen Physiol 134:295-308.
Bowden SE, Fletcher S, Loane DJ, Marrion NV (2001) Somatic colocalization of rat SK1 and D class (Ca(v)1.3) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J Neurosci, 21(20): RC175, 1-6.
Campos Rosa J, et al. (2000) Synthesis, molecular modeling, and pharmacological testing of bis-quinolinium cyclophanes: Potent, non-peptidic blockers of the apamin-sensitive Ca(2 +)-activated K( +) channel. J Med Chem 43:420-431.
Dunn PM (1999) UCL 1684: A potent blocker of Ca 2+-activated K + channels in rat adrenal chromaffin cells in culture. Eur J Pharmacol 368(1):119-123.
Finlayson K, et al. (2001) Characterisation of [( 125)I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes. Neuropharmacology 41:341-350.
Li W, Aldrich RW (2011) Electrostatic influences of charged inner pore residues on the conductance and gating of small conductance Ca 2+ activated K + channels. Proc Natl Acad Sci USA 108:5946-5953.
Soh H, Park CS (2002) Localization of divalent cation-binding site in the pore of a small conductance Ca( 2+)-activated K( +) channel and its role in determining currentvoltage relationship. Biophys J 83:2528-2538.
Monaghan AS, et al. (2004) The SK3 subunit of small conductance Ca 2+-activated K +channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J Biol Chem 279:1003-1009.
Tuteja D, et al. (2010) Cardiac small conductance Ca 2+- activated K + channel subunits form heteromultimers via the coiled-coil domains in the C termini of the channels. Circ Res 107:851-859.
Stocker M, Krause M, Pedarzani P (1999) An apamin-sensitive Ca 2+-activated K + current in hippocampal pyramidal neurons. Proc Natl Acad Sci USA 96:4662-4667.