Scientific conference in universities or research centers (Scientific conferences in universities or research centers)
Extensions and restrictions of Wythoff's game preserving its P-positions
Rigo, Michel
2011
 

Files


Full Text
Wythoff-adj2.pdf
Author preprint (505.98 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Combinatorial game; Fibonacci word; Morphism
Abstract :
[en] Wythoff's game is a century old classical two players combinatorial game. When studying this game, Beatty sequences associated with the Golden Ratio, syntactical properties of the representations of integers in the Fibonacci or Zeckendorf numeration system and the morphic Fibonacci word appear naturally in characterizations of its P-positions. Recall that whatever is the move played from a P-position, the other player has a winning strategy. Contrarily to the usual approach where one defines a new game by a set of rules and then tries to characterize the corresponding set of P-positions, our motivations are to proceed the other way around: keep the original set of P-positons while changing the rules. We consider extensions and restrictions of Wythoff's game having exactly the same set of P-positions as the original game. Our results are the following one: no strict subset of rules gives the same set of P-positions. On the other hand, we characterize all moves that can be adjoined while preserving the original set of P-positions. Testing if a move belongs to such an extended set of rules is shown to be done in polynomial time. In this talk, we won't consider many game theoretical aspects (but we will recall some basic facts on combinatorial games). We focus mainly on the role played by numeration systems, regular languages and bidimensional words generated by substitutions/morphisms. Indeed, games like this one provide nice interaction between combinatorics on words and combinatorial game theory. For instance, the set of P-positions of Wythoff's game are "coded" by the infinite Fibonacci word. Therefore, many arguments rely on this word, on automatic sequences and on the corresponding numeration systems. With these tools, we provide new bidimensional (shape-symmetric in the sense of Arnaud Maes) morphisms generating an infinite picture encoding respectively P-positions of Wythoff's game and moves that can be adjoined preserving the same set of P-positions.
Disciplines :
Mathematics
Computer science
Author, co-author :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Extensions and restrictions of Wythoff's game preserving its P-positions
Publication date :
21 October 2011
Event name :
Séminaire de l'équipe "Automates et applications", LIAFA (Chevaleret)
Commentary :
Joint work with E. Duchene, A. Fraenkel, R. Nowakowski, E. Duchêne, A. S. Fraenkel, R. J. Nowakowski, M. Rigo, Extensions and restrictions of Wythoff's game preserving its P-positions. J. Combin. Theory Ser. A 117 (2010), no. 5, 545–-567
Available on ORBi :
since 20 October 2011

Statistics


Number of views
176 (9 by ULiège)
Number of downloads
266 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi