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WYTHOFF’ S GAME OR “ CATCHING THE QUEEN”

W. A. Wythoff, A modification of the game of Nim,
Nieuw Arch. Wisk. 7 (1907), 199–202.

RULES OF THE GAME

◮ Two players play alternatively
◮ Two piles of tokens
◮ Remove

◮ any positive number of tokens from one pile or,
◮ the same positive number from the two piles.

◮ The one who takes the last token wins the game (last
move wins).

Set of moves : {(i ,0), i > 0} ∪ {(0, j), j > 0} ∪ {(k , k), k > 0}
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P-POSITION

A P-position is a position q from which the previous player
(moving to q) can force a win.

N-POSITION

A N -position is a position p from which the actual player has an
option leading ultimately to win the game.

Question : Are all positions N or P ?



GAME GRAPH

Initial position (i0, j0), by symmetry, take only (i ≥ j)

◮ Vertices : {(i , j), i ≤ i0, j ≤ j0}
◮ Edges : from each position to all its options :

i > 0 (i , j) → (i−k , j) k = 1, . . . , i
j > 0 (i , j) → (i , j−k) k = 1, . . . , j
i , j > 0 (i , j) → (i−k , j−k) k = 1, . . . ,min(i , j)

(2,2)

(1,0) (1,1)(0,0)

(3,2)

(2,0)(3,0) (2,1) (3,1)



GAME GRAPH

REMARK

Due to the rules, the game graph for Wythoff’s game is acyclic .

THEOREM [BERGE]

Any finite acyclic digraph has a unique kernel.

Moreover, this kernel can be obtained efficiently.

REMINDER/DEFINITION OF A KERNEL

A kernel in a graph G = (V ,E) is a subset W ⊆ V
◮ stable : ∀x , y ∈ W , (x , y) 6∈ E
◮ absorbing : ∀x ∈ V \ W , ∃y ∈ W : (x , y) ∈ E .
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GAME GRAPH

Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
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GAME GRAPH

Bottom-Up approach from the sinks
(they belong to the kernel because it is absorbing)
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(3,0) (2,1)

(3,1) (2,2)

(3,2)



GAME GRAPH

For Wythoff’s game, its game graph has a unique kernel K .
◮ stable : from a position in K , you always play out of K ,
◮ absorbing : from a position outside K , you can play into K ,
◮ (0,0) has to belong to K , otherwise K won’t be absorbing.

COROLLARY (FOR ANY IMPARTIAL ACYCLIC GAME )

The set of P-positions is exactly the kernel K
and all the other positions are N -positions.

{P-positions} ⊇ K

If p is a position in K , then it is a P-position
because there is a winning strategy outside K .

{P-positions} ⊆ K

If p is a P-position not in K , then there is a move from p to K ,
thus p is a N -position !
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A USUAL PROOF TECHNIQUE

To prove that a given set S of positions is the set of P-positions
of a game, one shows that S is stable and absorbing with
respect the game moves.



L INK WITH COMBINATORICS ON WORDS. . .

P-POSITION OF THEWYTHOFF’ S GAME I

(An,Bn)n≥0 = (0,0), (1,2), (3,5), (4,7), . . .

∀n ≥ 0,
{

An = Mex{Ai ,Bi | i < n}
Bn = An + n

P-POSITION OF THEWYTHOFF’ S GAME II
1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

F a b a a b a b a a b a a b a

P-POSITIONS OF THEWYTHOFF’ S GAME III

(An,Bn)n≥0 = (⌊n τ⌋, ⌊n τ2⌋).



MANY VARIATIONS OF THE WYTHOFF’ S GAME

◮ A.S. Fraenkel, How to beat your Wythoff games’ opponent
on three fronts, Amer. Math. Monthly 89 (1982), 353–361.

◮ A.S. Fraenkel, Heap games, Numeration systems and
Sequences, Annals of Combinatorics 2 (1998), 197–210.

◮ A.S. Fraenkel, The Raleigh Game, INTEGERS (2007).
◮ E. Duchêne, M.R., A morphic approach to combinatorial

games: the Tribonacci case, RAIRO Theoret. Inform. Appl.
42 (2008), 375–393.

◮ E. Duchêne, M.R., A class a cubic Pisot unit games,
Monat. für Math. 155 (2008), 217–249.

Different sets of moves / more piles
↓

Different sets of P-positions to characterize...



OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff’s game
that keep the set of P-positions of Wythoff’s game unchanged.

Characterize the different sets of moves...
↓

Same set of P-positions as Wythoff’s game

DEFINITION, E. DUCHÊNE, M. R., TCS 411 (2010)

A removal game G is invariant, if for all positions
p = (p1, . . . ,pℓ) and q = (q1, . . . ,qℓ) and any move
x = (x1, . . . , xℓ) such that x � p and x � q then, the move
p → p − x is allowed if and only if the move q → q − x is
allowed.



◮ Nim or Wythoff game are invariant games
◮ Raleigh game, the Rat and the Mouse game, Tribonacci

game, Cubic Pisot games,. . . are NOT invariant

NON-INVARIANT GAME

Remove an odd number of tokens from a position (a,b) if a or b
is a prime number, and an even number of tokens otherwise.

Very recently, Nhan Bao Ho (La Trobe Univ., Melbourne),
Two variants of Wythoff’s game preserving its P-positions:

◮ A restriction of Wythoff’s game in which if the two entrees
are not equal then removing tokens from the smaller pile is
not allowed.

◮ An extension of Wythoff’s game obtained by adjoining a
move allowing players to remove k tokens from the smaller
pile and ℓ tokens from the other pile provided ℓ < k .



OUR GOAL / DUAL QUESTION

Consider invariant extensions or restrictions of Wythoff’s game
that keep the set of P-positions of Wythoff’s game unchanged.

◮ We characterize all moves that can be adjoined while
preserving the original set of P-positions.

◮ Testing if a move belong to such an extended set of rules
can be done in polynomial time.



DURING OUR JOURNEY...

CANONICAL CONSTRUCTION [COBHAM ’72]

Let k ≥ 2. A sequence x = (xn)n≥0 ∈ AN is k-automatic IFF it is
the image under a coding of an infinite word generated by a
prolongable k-uniform morphism.

EXAMPLE

Characteristic sequence of {n | ∃i , j ≥ 0 : n = 2i + 2j} ∪ {1}

g :







A 7→ AB
B 7→ BC
C 7→ CD
D 7→ DD

f :







A 7→ 0
B 7→ 1
C 7→ 1
D 7→ 0

gω(A) = ABBCBCCDBCCDCDDDBCCDCDDDCDDDDDDD · · ·

f (gω(A)) = 01111110111010001110100010000000 · · ·



DURING OUR JOURNEY...

f (gω(A)) = 01111110111010001110100010000000 · · ·

A/0 B/1 C/1 D/0

0 0 0 0,1

1 1 1

xn = τ(q0 · rep2(n)).



DURING OUR JOURNEY...

Canonical construction: (non-uniform) morphisms → automata

ϕ : a 7→ abc, b 7→ ac, c 7→ b

0
1

0

01

2
c

b

a

ϕω(a) = abcacbabcbacabcacbacabcbabcacb · · ·

Consider the language L = L(M) \ 0{0,1,2}∗.

Remark: Positions in ϕω(a) are counted from 1.



Take the words of L with radix order (abstract system)

0
1

0

01

2
c

b

a

n wn

0 ε a 1
1 1 b 2
2 2 c 3
3 10 a 4
4 11 c 5
5 20 b 6
6 100 a 7
7 101 b 8
8 102 c 9
9 110 b 10

n wn

10 200 a 11
11 201 c 12
12 1000 a 13
13 1001 b 14
14 1002 c 15
15 1010 a 16
16 1011 c 17
17 1020 b 18
18 1100 a 19
19 1101 c 20

Not a “positional” system, no sequence behind.

EXAMPLE :

The 4th letter is a, it corresponds to w3 = 10.

Since ϕ(a) = abc, we consider







w30 = 100 = wi

w31 = 101 = wi+1

w32 = 102 = wi+2
then the (i + 1)st, (i + 2)st, (i + 3)st letters are a, b, c.



repL(i) := wi , valL(wi) := i

PROPOSITION

Let the nth letter of ϕω(a) be σ and wn−1 be the nth word in L.
If ϕ(σ) = x1 · · · xr , then x1 · · · xr appears in ϕω(a) in positions
valL(wn−10)+1, . . . , valL(wn−1(r − 1))+1.

For Wythoff’s game: Fibonacci word F , L = 1{01,0}∗ ∪ {ε} and
we get the usual Fibonacci system ρF : N → L, πF : L → N.

COROLLARY

◮ If the nth letter in F is a (n ≥ 1), then this a produces
through ϕ a factor ab occupying positions
πF (ρF (n−1)0)+1 and πF (ρF (n−1)1)+1.

◮ If the nth letter in F is b (n ≥ 1), then this b produces
through ϕ a letter a occupying position πF (ρF (n − 1)0) + 1.
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REMINDER ON FIBONACCI NUMERATION SYSTEM

Fibonacci sequence : Fi+2 = Fi+1 + Fi , F0 = 1, F1 = 2
Use greedy expansion, . . . ,21,13,8,5,3,2,1

n ρF (n) n ρF (n) n ρF (n)
1 1 8 10000 15 100010
2 10 9 10001 16 100100
3 100 10 10010 17 100101
4 101 11 10100 18 101000
5 1000 12 10101 19 101001
6 1001 13 100000 20 101010
7 1010 14 100001 21 1000000

E. Zeckendorf, Représentation des nombres naturels par une somme
des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy.
Sci. Liège 41 (1972), 179–182.



In fact, this is a special case of the following result.

THEOREM [A. M AES, M.R. ’02]

The set of S-automatic sequences is exactly the set of morphic
words.

Take any regular language with radix order ⊕ DFAO

i 0 1 2 3 4 5 6 7 8 9 · · ·
repS(i) ε a b aa ab bb aaa aab abb bbb · · ·

a

10 2 3
a a a

b b

b
b

01023031200231010123023031203120231002310123010123 · · ·



n 1 2 3 4 5 6 7 8 9 10 11 12
a b a a b a b a a b a a

Ai 1 3 4 6 8 9 11 12
Bi 2 5 7 10

ρF (n − 1) ε 1 10 10
0

10
1

10
00

10
01

10
10

10
00

0

10
00

1

10
01

0

10
10

0

P-POSITIONS OF THEWYTHOFF’ S GAME IV

1

00

a b For all n ≥ 1, we have

An = πF (ρF (n − 1)0) + 1
Bn = πF (ρF (An − 1)1) + 1.



MORE ?
Can we get a “morphic characterization” of the Wythoff’s mat rix ?

(Pi ,j)i ,j≥0 =

0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
...

. . .



Let’s try something...

ϕ : a 7→
a b
c d

b 7→
i
e

c 7→ i j d 7→ i e 7→ f b

f 7→
g b
h d

g 7→
f b
h d

h 7→ i m i 7→
i m
h d

j 7→
k
c

k 7→
l m
c d

l 7→
k m
c d

m 7→
i
h

and the coding

µ : e,g, j , l 7→ 1, a,b, c,d , f ,h, i , k ,m 7→ 0



O. Salon, Suites automatiques à multi-indices, Séminaire de
théorie des nombres, Bordeaux, 1986–1987, exposé 4.

SHAPE-SYMMETRIC MORPHISM [A. M AES ’99]

If P is the infinite bidimensional picture that is the fixpoint of ϕ,
then for all i , j ∈ N, if ϕ(Pi ,j) is a block of size k × ℓ then ϕ(Pj ,i)
is of size ℓ× k



a 7→
a b
c d

7→

a b i
c d e
i j i

7→

a b i i m
c d e h d
i j i f b
i m k i m
h d c h d

sizes : 1, 2, 3, 5



· · · 7→

a b i i m i m i
c d e h d h d h
i j i f b i m i
i m k i m g b i
h d c h d h d e
i m i l m i m i
h d h c d h d h
i m i i j i m i

7→ · · ·

size : 8,. . .





MORPHISMS→ AUTOMATA

We can do the same as for the unidimensional case :
Automaton with input alphabet

{(
0
0

)

,

(
1
0

)

,

(
0
1

)

,

(
1
1

)}

ϕ(r) =
s t
u v

, s t ,
s
u

or s

we have transitions like

r





0
0





−→ s, r





1
0





−→ t , r





0
1





−→ u, r





1
1





−→ v .



We get (after trimming useless part with four states)

0
0

1
0

0
1

1
0

1
0

0
0

0
0 0

0

0
1

1
0

0
1

0
1

0
0

0
00

0

k

l

j c a b e f

g

This automaton accepts the words
(

0w1 · · ·wℓ

w1 · · ·wℓ0

)

and
(

w1 · · ·wℓ0
0w1 · · ·wℓ

)

where w1 · · ·wℓ is a valid F -representation ending with an even
number of zeroes.



Such a characterization is well-known, but differs from the one
we get previously...

REMINDER

For all n ≥ 1, we have

An = πF (ρF (n − 1)0) + 1
Bn = πF (ρF (An − 1)1) + 1.

It is hopefully the same, but why ?



• First case : ρF (n − 1) = u0

ρF (An) = ρF (πF (ρF (n − 1)0
︸ ︷︷ ︸

u00

) + 1) = u01 no zero

ρF (An − 1) = u00 and

ρF (Bn) = ρF (πF (ρF (An − 1)1
︸ ︷︷ ︸

u001

) + 1) = u010 one zero

• Second case : ρF (n − 1) = u01

ρF (An) = ρF (πF (ρF (n − 1)0
︸ ︷︷ ︸

u010

) + 1) = “u011′′ . . .

Normalize u011 or look for the successor of u010



Use the transducer (R to L) computing the successor
[Frougny’97]

1/1,0/0

0/.

1/.0/01

0/0

1/0

./1 ./10

10 → 100, 2 zeroes

x10(01)n

︸ ︷︷ ︸

u

010 → x101(00)n00 2n + 2 zeroes, n ≥ 0

1(01)n

︸ ︷︷ ︸

u

010 → 100(00)n00 2n + 4 zeroes, n ≥ 0



ρF (An − 1) = u010 and

ρF (Bn) = ρF (πF (ρF (An − 1)1
︸ ︷︷ ︸

u0101

) + 1) = “u0102′′ . . .

1/1,0/0

0/.

1/.0/01

0/0

1/0

./1 ./10

101 → 1000, 3 zeroes

x10(01)n

︸ ︷︷ ︸

u

0101 → x101(00)n000 2n + 3 zeroes, n ≥ 0

1(01)n

︸ ︷︷ ︸

u

0101 → 100(00)n000 2n + 5 zeroes, n ≥ 0

Conclusion : “An even number of zeroes, Bn one more”, OK



EXTENSION PRESERVING SET OFP -POSITIONS

To decide whether or not a move can be adjoined to Wythoff’s
game without changing the set K of P- positions, it suffices to
check that it does not change the stability property K .

Remark : absorbing property holds true whatever the adjoined
move is.

CONSEQUENCE

A move (i , j) can be added IFF it prevents to move from a
P-position to another P-position.

In other words, a necessary and sufficient condition for a move
(i , j)i<j to be adjoined is that it does not belong to

{(An−Am,Bn−Bm) : n > m ≥ 0}∪{(An−Bm,Bn−Am) : n > m ≥ 0}



Thanks to the previous characterizations of An, Bm,

PROPOSITION

A move (i , j)i<j can be adjoined to without changing the set of
P-positions IFF

(i , j) 6= (⌊n τ⌋ − ⌊m τ⌋, ⌊n τ2⌋ − ⌊m τ2⌋) ∀n > m ≥ 0

and

(i , j) 6= (⌊n τ⌋ − ⌊m τ2⌋, ⌊n τ2⌋ − ⌊m τ⌋) ∀n > m ≥ 0



For all i , j ≥ 0, Wi ,j = 0 IFF Wythoff’s game with the adjoined
move (i , j) has Wythoff’s sequence as set of P-positions,

(Wi ,j)i ,j≥0 =

0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 1 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 0
0 0 1 0 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0
...

. . .



COROLLARY

Let I ⊆ N. Wythoff’s game with adjoined moves

{(xi , yi) : i ∈ I, xi , yi ∈ N}

has the same sequence (An,Bn) as set of P-positions

IFF

Wxi ,yi 6= 1 for all i ∈ I.



ARE WE DONE? Complexity issue

We investigate tractable extensions of Wythoff’s game, we also
need to test these conditions in polynomial time. And the winner
can consummate a win in at most an exponential number of moves.

MANY “ EFFORTS” LEAD TO THIS

For any pair (i , j) of positive integers, we have Wi ,j = 1 if and
only if one the three following properties is satisfied :

◮ (ρF (i − 1), ρF (j − 1)) = (u0,u01) for any valid
F -representation u in {0,1}∗.

◮ (ρF (i − 2), ρF (j − 2)) = (u0,u01) for any valid
F -representation u in {0,1}∗.

◮ (ρF (j − Ai − 2), ρF (j − Ai − 2 + i)) = (u1,u′0) for any two
valid F -representations u and u′ in {0,1}∗.



MORPHIC CHARACTERIZATION OFW ... IN PROGRESS

ψ : a 7→
a b
c d

b 7→
e
f

c 7→ e h d 7→ i e 7→
j k
l m

f 7→ g b g 7→
y b
o t

h 7→
z
c

i 7→
i n
o d

j 7→
e p
q r

k 7→
e
s

l 7→ e u m 7→ e

n 7→
i
o

o 7→ i n p 7→
e
q

q 7→ e p r 7→ e

s 7→ v k t 7→ i u 7→
w
l

v 7→
w p
l r

w 7→
v k
q r

x 7→
z n
c d

y 7→
g b
o d

z 7→
x n
c t



and the coding ν : a,b, c,d ,e, i , j , k , l ,n,o,p,q, r 7→ 0
f ,g,h,m, s, t ,u, v ,w , x , y , z 7→ 1.



Corresponding automaton
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SOME OF THE MACHINERY BEHIND



LEMMA

Let Fn be the prefix of F of length n.
For any finite factor bua occurring in F with |u| = n,
we have |u|a = |Fn|a and |u|b = |Fn|b.

EXAMPLE

Take u = aabaab, bua of length 8 starts in F from position 7.
F6 = abaaba is a permutation of u.

F = abaaba
︸ ︷︷ ︸

F6

bua
︷ ︸︸ ︷

b aabaab
︸ ︷︷ ︸

u

a baababaaba · · ·

Proof : algebraic



LEMMA

Let n ≥ 1 be such that Bn+1 − Bn = 2. Then ρF (Bn − 1) ends
with 101.

Proof : Morphic structure of F

PROPOSITION

{(Aj − Ai ,Bj − Bi) | j > i ≥ 0} = {(An,Bn) | n > 0}

∪{(An + 1,Bn + 1) | n > 0}

Proof : Density of the {n τ}’s in [0,1]



LEMMA

Let u1 ∈ {0,1}∗ be a valid F -representation. If ρF (πF (u1) + n)1
is also a valid F -representation, then

πF (ρF (πF (u1) + n)1) = πF (u00) + πF (ρF (n − 1)0) + 4.

Otherwise, ρF (πF (u1) + n)1 is not a valid F -representation and

πF (ρF (πF (u1) + n)0) = πF (u00) + πF (ρF (n)0) + 2.

Proof : Morphic structure of F

THEOREM

Let i , j be such that Aj − Bi = n > 0. We have

Bj − Ai = Bi + An + 1.



CONCLUDING RESULT

THEOREM

There is no redundant move in Wythoff’s game. In particular, if
any move is removed, then the set of P-positions changes.



AN OPEN PROBLEM

◮ Sprague-Grundy function Mex(Opt(p)) for Nim is 2-regular
(i.e., finitely generated 2-kernel)

◮ so what for Wythoff’s game ?

0 1 2 3 4 5 6 7 8 9 · · ·
0 0 1 2 3 4 5 6 7 8 9 · · ·
1 1 2 0 4 5 3 7 8 6 10
2 2 0 1 5 3 4 8 6 7 11
3 3 4 5 6 2 0 1 9 10 12
4 4 5 3 2 7 6 9 0 1 8
5 5 3 4 0 6 8 10 1 2 7
6 6 7 8 1 9 10 3 4 5 13
7 7 8 6 9 0 1 4 5 3 14
8 8 6 7 10 1 1 5 3 4 15
9 9 10 11 12 8 7 13 14 15 16
...

. . .

A. S. Fraenkel, the Sprague-Grundy function for Wytoff’s game, TCS’90


