Profil

Sonneville Valentin

Département d'aérospatiale et mécanique > Laboratoire des Systèmes Multicorps et Mécatroniques

A&M

See author's contact details
Main Referenced Co-authors
Bruls, Olivier  (17)
Cardona, Alberto (5)
Duysinx, Pierre  (3)
Géradin, Michel  (3)
Tromme, Emmanuel  (3)
Main Referenced Keywords
Lie group (12); SE3 (6); Geometrically exact (3); Multibody systems (3); Aerospace Engineering (2);
Main Referenced Disciplines
Mechanical engineering (21)
Aerospace & aeronautics engineering (1)

Publications (total 21)

The most downloaded
652 downloads
Sonneville, V., & Bruls, O. (2013). A FEW GOOD REASONS TO CONSIDER A BEAM FINITE ELEMENT FORMULATION ON THE LIE GROUP SE(3). In Proceedings of the ASME 2013 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2013. doi:10.1115/DETC2013-13099 https://hdl.handle.net/2268/154744

The most cited

149 citations (Scopus®)

Sonneville, V., Cardona, A., & Bruls, O. (January 2014). Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 268, 451-474. doi:10.1016/j.cma.2013.10.008 https://hdl.handle.net/2268/159471

Géradin, M., & Sonneville, V. (2023). A two-field approach to multibody dynamics of rotating flexible bodies. Multibody System Dynamics. doi:10.1007/s11044-023-09912-w
Peer reviewed

Sonneville, V., & Géradin, M. (2022). Two-field formulation of the inertial forces of a geometrically-exact beam element. Multibody System Dynamics. doi:10.1007/s11044-022-09867-4
Peer reviewed

Tromme, E., Sonneville, V., Bruls, O., & Duysinx, P. (February 2016). On the equivalent static load method for flexible multibody systems described with a nonlinear finite element formalism. International Journal for Numerical Methods in Engineering, 108 (6), 646-664. doi:10.1002/nme.5237
Peer Reviewed verified by ORBi

Sonneville, V. (30 October 2015). Flexible multibody system modelling: A geometric local frame approach on SE(3) [Paper presentation]. Seminar, Santa Fe, Argentina.

Tromme, E., Sonneville, V., Bruls, O., & Duysinx, P. (02 July 2015). Optimal design of flexible mechanisms using the Equivalent Static Load method and a Lie group formalism [Paper presentation]. ECCOMAS Thematic Conference on Multibody Dynamics, Barcelone, Spain.

Sonneville, V., Cardona, A., & Bruls, O. (July 2015). Exploiting frame-invariant operators for the efficient numerical simulation of flexible multibody systems [Paper presentation]. ECCOMAS Thematic Conference on Multibody Dynamics.

Sonneville, V., Cardona, A., & Bruls, O. (July 2015). A geometrically exact shell finite element with an almost constant tangent stiffness matrix [Paper presentation]. ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain.

Lismonde, A., Sonneville, V., & Bruls, O. (29 June 2015). Trajectory optimization for 3D robots with elastic links [Paper presentation]. ECCOMAS Thematic Conference on Multibody Dynamics 2015.

Sonneville, V. (2015). A geometric local frame approach for flexible multibody systems [Doctoral thesis, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/180964

Dewalque, F., Sonneville, V., & Bruls, O. (22 July 2014). Nonlinear analysis of tape springs: Comparison of two geometrically exact finite element formulations [Paper presentation]. 11th World Congress on Computational Mechanics (WCCM XI) - 5th European Conference on Computational Mechanics (ECCM V), Barcelona, Spain.

Sonneville, V., & Bruls, O. (11 July 2014). A formulation on the special Euclidean group for dynamic analysis of multibody systems. Journal of Computational and Nonlinear Dynamics, 9 (4), 041002. doi:10.1115/1.4026569
Peer reviewed

Sonneville, V., & Bruls, O. (July 2014). Model reduction of geometrically exact structures formulated on the Lie group SE(3) [Paper presentation]. The 3rd Joint International Conference on Multibody System Dynamics - The 7th Asian Conference on Multibody Dynamics, Busan, South Korea.

Sonneville, V., & Bruls, O. (July 2014). FORMULATION OF A NON-LINEAR SHELL FINITE ELEMENT ON THE LIE GROUP SE(3) [Paper presentation]. 11th World Congress on Computational Mechanics (WCCM XI) - 5th European Conference on Computational Mechanics (ECCM V), Barcelona, Spain.

Sonneville, V., Cardona, A., & Bruls, O. (June 2014). Geometric interpretation of a non-linear beam finite element on the Lie group SE(3). Archive of Mechanical Engineering, 61 (2), 305-329. doi:10.2478/meceng-2014-0018
Peer Reviewed verified by ORBi

Sonneville, V., & Bruls, O. (January 2014). Sensitivity analysis for multibody systems formulated on a Lie group. Multibody System Dynamics, 31, 47-67. doi:10.1007/s11044-013-9345-z
Peer reviewed

Sonneville, V., Cardona, A., & Bruls, O. (January 2014). Geometrically exact beam finite element formulated on the special Euclidean group SE(3). Computer Methods in Applied Mechanics and Engineering, 268, 451-474. doi:10.1016/j.cma.2013.10.008
Peer Reviewed verified by ORBi

Sonneville, V., & Bruls, O. (2013). A FEW GOOD REASONS TO CONSIDER A BEAM FINITE ELEMENT FORMULATION ON THE LIE GROUP SE(3). In Proceedings of the ASME 2013 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2013. doi:10.1115/DETC2013-13099
Peer reviewed

Virlez, G., Bruls, O., Sonneville, V., Tromme, E., Duysinx, P., & Géradin, M. (2013). Contact model between superelements in dynamic multibody systems. In Proceedings of ASME2013 International Design Engineering Technical Conference & Computers and Information in Engineering Conference IDETC/CIE 2013. doi:10.1115/DETC2013-13469
Peer reviewed

Sonneville, V., Cardona, A., & Bruls, O. (July 2013). Formulation of a geometrically exact beam finite element on the Lie group SE(3) [Paper presentation]. ECCOMAS Multibody Dynamics Conference, Zagreb, Croatia.

Sonneville, V., & Bruls, O. (2012). Formulation of Kinematic Joints and Rigidity Constraints in Multibody Dynamics using a Lie Group Approach. In Proceedings of the 2nd Joint International Conference on Multibody System Dynamics (IMSD).

Bruls, O., & Sonneville, V. (February 2012). Sensitivity analysis for flexible multibody systems formulated on a Lie group [Paper presentation]. Euromech Colloquium 524, Multibody system modelling, control and simulation for engineering design, Enschede, Netherlands.

Contact ORBi