[en] We report a data-set of methane (CH4) concentrations in the surface waters of Lake Kivu obtained during four cruises (March 2007, September 2007, June 2008, April 2009) covering the two main seasons, rainy (October to May) and dry (June to September). Spatial gradients of CH4 concentrations were modest in the surface waters of the main basin. In Kabuno Bay (a small sub-basin), CH4 concentrations in surface waters were significantly higher than in the main basin. Seasonal variations of CH4 in the main basin were strongly driven by deepening of the mixolimnion and mixing of surface waters with deeper waters rich in CH4. On an annual basis, both Kabuno Bay and the main basin of Lake Kivu were over-saturated in CH4 with respect to atmospheric equilibrium (7330% and 2510%, respectively), and emitted CH4 to the atmosphere (39 mmol m-2 yr-1 and 13 mmol m-2 yr-1, respectively). The source of CH4 to atmosphere was two orders of magnitude lower than the CH4 upward flux. The source of CH4 to the atmosphere from Lake Kivu corresponded to ~60% of the terrestrial sink of atmospheric CH4 over the lake’s catchment. A global cross-system comparison of CH4 in surface waters of lakes shows that both Kabuno Bay and the main basin are at the lower end of values in lakes globally, despite the huge amounts of CH4 in the deeper layers of the lake. This is related to the strongly meromictic nature of the lake that promotes an intense removal of CH4 by bacterial oxidation.
Research Center/Unit :
FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Borges, Alberto ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
Abril, Gwenaël
Delille, Bruno ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abril, G., and N. Iversen (2002), Methane dynamics in a shallow, nontidal, estuary (Randers Fjord, Denmark), Mar. Ecol. Prog. Ser., 230, 171-181, doi:10.3354/meps230171. (Pubitemid 34458336)
Bastviken, D., J. Cole, M. Pace, and L. Tranvik (2004), Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cycles, 18, GB4009, doi:10.1029/ 2004GB002238. (Pubitemid 40440571)
Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich- Prast (2011), Freshwater methane emissions offset the continental carbon sink, Science, 331, 50, doi:10.1126/science.1196808.
Battin, T. J., L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater (2008), Biophysical controls on organic carbon fluxes in fluvial networks, Nat. Geosci., 1, 95-100, doi:10.1038/ngeo101.
Brümmer, C., H. Papen, R. Wassmann, and N. Brüggemann (2009), Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa), Global Biogeochem. Cycles, 23, GB1001, doi:10.1029/2008GB003237.
Chen, Y.-H., and R. G. Prinn (2006), Estimation of atmospheric methane emission between 1996-2001 using a 3-D global chemical transport model, J. Geophys. Res., 111, D10307, doi:10.1029/2005JD006058. (Pubitemid 44043256)
Cole, J. J., and N. F. Caraco (1998), Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6, Limnol. Oceanogr., 43, 647-656, doi:10.4319/lo.1998.43.4.0647. (Pubitemid 28382174)
Cole, J. J., and N. F. Caraco (2001), Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism, Mar. Freshwater Res., 52, 101-110, doi:10.1071/MF00084. (Pubitemid 32116662)
Cole, J., S. Carpenter, M. Pace, M. Van de Bogert, J. Kitchell, and J. Hodgson (2006), Differential support of lake food webs by three types of terrestrial organic carbon, Ecol. Lett., 9, 558-568, doi:10.1111/j.1461- 0248.2006.00898.x.
Cole, J. J., et al. (2007), Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget, Ecosystems, 10, 172-185, doi:10.1007/s10021-006-9013-8. (Pubitemid 46825795)
Curtis, P. J., and D. W. Schindler (1997), Hydrologic control of dissolved organic matter in low-order Precambrian Shield lakes, Biogeochemistry, 36, 125-138, doi:10.1023/A:1005787913638. (Pubitemid 27111894)
Degens, E. T., R. P. von Herzen, H.-K. Wong, W. G. Deuser, and H. W. Jannasch (1973), Lake Kivu: Structure, chemistry and biology of an East African rift lake, Geol. Rundsch., 62, 245-277, doi:10.1007/ BF01826830.
Delmas, R. A., J. Servant, J. P. Tathy, B. Cros, and M. Labat (1992), Sources and sinks of methane and carbon dioxide exchanges in mountain forest in Equatorial Africa, J. Geophys. Res., 97(D6), 6169-6179, doi:10.1029/90JD02575.
Fee, E. J., J. A. Shearer, E. R. Debruyn, and E. U. Schindler (1992), Effects of lake size on phytoplankton photosynthesis, Can. J. Fish. Aquat. Sci., 49, 2445-2459, doi:10.1139/f92-270. (Pubitemid 23401382)
Fee, E. J., R. E. Hecky, G. W. Regehr, L. L. Hendzel, and P. Wilkinson (1994), Effects of lake size on nutrient availability in the mixed layer during summer stratification, Can. J. Fish. Aquat. Sci., 51, 2756-2768, doi:10.1139/f94-276. (Pubitemid 26441746)
Fee, E. J., R. E. Hecky, S. E. M. Kasian, and D. R. Cruikshank (1996), Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes, Limnol. Oceanogr., 41, 912-920, doi:10.4319/ lo.1996.41.5.0912. (Pubitemid 26381069)
Jannasch, H. W. (1975), Methane oxidation in Lake Kivu (central Africa), Limnol. Oceanogr., 20, 860-864, doi:10.4319/lo.1975.20.5.0860.
Macdonald, J. A., P. Eggleton, D. E. Bignell, F. Forzi, and D. Fowler (1998), Methane emission by termites and oxidation by soils, across a forest disturbance gradient in the Mbalmayo Forest Reserve, Cameroon, Global Change Biol., 4, 409-418, doi:10.1046/j.1365-2486.1998.00163.x.
Macdonald, J. A., D. Jeeva, P. Eggleton, R. Davies, D. E. Bignell, D. Fowler, J. Lawton, and M. Maryati (1999), The effect of termite biomass and G03032 BORGES ET AL.: CH4 EMISSIONS FROM LAKE KIVU G03032 6 of 7anthropogenic disturbance on the CH4 budgets of tropical forests in Cameroon and Borneo, Global Change Biol., 5, 869-879, doi:10.1046/ j.1365-2486.1999.00279.x. (Pubitemid 30057566)
McGinnis, D. F., J. Greinert, Y. Artemov, S. E. Beaubien, and A. Wüest (2006), Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, J. Geophys. Res., 111, C09007, doi:10.1029/2005JC003183. (Pubitemid 47381777)
Muvundja, F., N. Pasche, F. W. B. Bugenyi, M. Isumbisho, B. Müller, J. N. Namugize, P. Rinta, M. Schmid, R. Stierli, and A. Wüest (2009), Balancing nutrient inputs to Lake Kivu, J. Great Lakes Res., 35(3), 406-418, doi:10.1016/j.jglr.2009.06.002.
Nayar, A. (2009), A lakeful of trouble, Nature, 460, 321-323, doi:10.1038/ 460321a.
Pasche, N., M. Schmid, F. Vazquez, C. Schubert, A. Wüest, J. D. Kessler, M. A. Pack, W. S. Reeburgh, and H. Bürgmann (2011), Methane sources and sinks in Lake Kivu, J. Geophys. Res., 116, G03006, doi:10.1029/ 2011JG001690.
Rasmussen, J. B., L. Godbout, and M. Schallenberg (1989), The humic content of lake water and its relationship to watershed and lake morphometry, Limnol. Oceanogr., 34, 1336-1343, doi:10.4319/lo.1989.34.7.1336.
Sarmento, H., M. Isumbisho, and J.-P. Descy (2006), Phytoplankton ecology of Lake Kivu (Eastern Africa), J. Plankton Res., 28, 815-829, doi:10.1093/ plankt/fbl017. (Pubitemid 44543479)
Schindler, D. W. (1971), A hypothesis to explain differences and similarities among lakes in the Experimental Lakes Area, northwestern Ontario, J. Fish. Res. Board Can., 28, 295-301, doi:10.1139/f71-039.
Schmid, M., M. Halbwachs, B. Wehrli, and A. Wüest (2005), Weak mixing in Lake Kivu: New insights indicate increasing risk of uncontrolled gas eruption, Geochem. Geophys. Geosyst., 6, Q07009, doi:10.1029/ 2004GC000892.
Schoell, M., K. Tietze, and S. M. Schoberth (1988), Origin of methane in Lake Kivu (East-Central Africa), Chem. Geol., 71, 257-265, doi:10.1016/0009- 2541(88)90119-2.
Tathy, J. P., B. Cros, R. A. Delmas, A. Marenco, J. Servant, and M. Labat (1992), Methane emission from flooded forest in Central Africa, J. Geophys. Res., 97(D6), 6159-6168, doi:10.1029/90JD02555.
Tietze, K., M. Geyh, H. Müller, L. Schröder, W. Stahl, and H. Wehner (1980), The genesis of the methane in Lake Kivu (Central Africa), Geol. Rundsch., 69, 452-472, doi:10.1007/BF02104549.
Tranvik, L. J., et al. (2009), Lakes and reservoirs as regulators of carbon cycling and climate, Limnol. Oceanogr., 54, 2298-2314, doi:10.4319/ lo.2009.54.6-part-2.2298.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373-7382, doi:10.1029/92JC00188.
Weidel, B., S. Carpenter, J. Cole, J. Hodgson, J. Kitchell, M. Pace, and C. Solomon (2008), Carbon sources supporting fish growth in a north temperate lake, Aquat. Sci., 70, 446-458, doi:10.1007/s00027-008- 8113-2.
Werner, C., R. Kiese, and K. Butterbach-Bahl (2007), Soil-atmosphere exchange of N2O, CH4, and CO2 and controlling environmental factors for tropical rain forest sites in western Kenya, J. Geophys. Res., 112, D03308, doi:10.1029/2006JD007388. (Pubitemid 47248883)
Yamamoto, S., J. B. Alcauskas, and T. E. Crozier (1976), Solubility of methane in distilled water and seawater, J. Chem. Eng. Data, 21, 78-80, doi:10.1021/je60068a029.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.