EEG entropy; vegetative state; minimally conscious state
Abstract :
[en] Monitoring the level of consciousness in brain injured patients with disorders of consciousness is crucial as it provides diagnostic and prognostic information. Behavioral assessment remains the gold standard for assessing consciousness but previous studies have shown a high rate of misdiagnosis. This study aimed to investigate the usefulness of electroencephalography (EEG) entropy measurements in differentiating unconscious (coma or vegetative) from minimally conscious patients. Left fronto-temporal EEG recordings (10-minute resting state epochs) were prospectively obtained in 56 patients and 16 age-matched healthy volunteers. Patients were assessed in the acute (≤1 month post-injury;n=29) or chronic (>1 month post-injury; n=27) stage. The etiology was traumatic in 23 patients. Automated online EEG entropy calculations (providing an arbitrary value ranging from 0 to 91) were compared with behavioral
assessments (Coma Recovery Scale-Revised) and outcome. EEG entropy correlated with Coma Recovery Scale total scores (r=0.49). Mean EEG entropy values were higher in minimally conscious (73±19; mean and standard deviation) than in vegetative/unresponsive wakefulness
syndrome patients (45±28). Receiver operating characteristic analysis revealed an entropy cut-off value of 52 differentiating acute unconscious from minimally conscious patients (sensitivity 89% and specificity 90%). In chronic patients, entropy measurements offered
no reliable diagnostic information. EEG entropy measurements did not allow prediction of outcome. User-independent time-frequency balanced spectral EEG entropy measurements seem to constitute an interesting diagnostic – albeit not prognostic – tool for assessing neural network complexity in disorders of consciousness in the acute setting. Future studies are needed before using this tool in routine clinical practice, and these should seek to improve automated EEG
quantification paradigms in order to reduce the remaining false negative and false positive findings.
Disciplines :
Neurology
Author, co-author :
Gosseries, Olivia ; Université de Liège - ULiège > Centre de recherches du cyclotron
Schnakers, Caroline ; Université de Liège - ULiège > Centre de recherches du cyclotron
LEDOUX, Didier ; Centre Hospitalier Universitaire de Liège - CHU > Soins intensifs
Laureys S, Celesia GG, Cohadon F et al.; European Task Force on Disorders of Consciousness. Unresponsivewakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med 2010;8:68
Plum F, Posner JB. The Diagnosis of Stupor and Coma. 3rd edition. Philadelphia, PA; F.A. Davis 1983
Giacino JT, Ashwal S, Childs N et al. The minimally conscious state: definition and diagnostic criteria. Neurology 2002;58:349-353
Monti MM, Laureys S, Owen AM. The vegetative state. BMJ 2010;341:c3765
Schnakers C, Majerus S, Laureys S. Diagnosis and investigation of altered states of consciousness. Reanimation 2004;13:368-375
Schnakers C, Vanhaudenhuyse A, Giacino JT et al. Diagnosticaccuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol 2009;9:35
Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology 1993;43:1465-1467
Andrews K, Murphy L, Munday R, Littlewood C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 1996;313:13-16
Schnakers C, Giacino JT, Kalmar K et al. Does the FOUR score correctly diagnose the vegetative and minimally conscious states? Ann Neurol 2006;60:744-745
Giacino JT, Kalmar K, Whyte J. The JFK Coma RecoveryScale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004;85:2020-2029
Young GB. The EEG in coma. J Clin Neurophysiol 2000;17:473-485
Palanca BJ, Mashour GA, Avidan MS. Processed electroencephalogram in depth of anesthesia monitoring. Curr Opin Anaesthesiol 2009;22:533-539
Bein B. Entropy. Best Pract Res Clin Anaesthesiol 2006;20:101-109
Pincus SM, Gladstone IM, Ehrenkranz RA. A regularity statistic for medical data analysis. J Clin Monit 1991;7:335-345
Bruhn J, Röpcke H, Hoeft A. Approximate entropy as an electroencephalographic measure of anesthetic drug during desflurane anesthesia. Anesthesiology 2000;92: 715-726
Shannon C. A mathematical theory of communication. Bell System Technical Journal 1948;27:623-656
Bruhn J, Lehmann LE, Röpcke H, Bouillon TW, Hoeft A. Shannon entropy applied to the measurement of the electroencephalographic effects of desflurane. Anesthesiology 2001;95:30-35
Rezek IA, Roberts SJ. Stochastic complexity measures for physiological signal analysis. IEEE Trans Biomed Eng 1998;45:1186-1191
Inouye T, Shinosaki K, Sakamoto H et al. Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 1991;79:204-210
Paolo Martorano P, Falzetti G, Pelaia P. Bispectral index and spectral entropy in neuroanesthesia. J Neurosurg Anesthesiol 2006;18:205-210
Vakkuri A, Yli-Hankala A, Talja P et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 2004;48:145-153
Hans P, Dewandre PY, Brichant JF, Bonhomme V. Comparative effects of ketamine on Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. Br J Anaesth 2005;94:336-340
The Multi-Society Task Force on PVS. Medical aspects ofthe persistent vegetative state (1). N Engl J Med 1994;330:1499-1508
Schnakers C, Majerus S, Giacino J et al. A French validation study of the Coma Recovery Scale-Revised (CRS-R). Brain Inj 2008;22:786-792
Viertiö-Oja H, Maja V, Särkelä M et al. Description of the Entropy algorithm as applied in the Datex-Ohmeda S/5 Entropy Module. Acta Anaesthesiol Scand 2004;48: 154-161
Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993;39:561-577
Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 1998;352: 1808-1812
Brenner RP. The interpretation of the EEG in stupor andcoma. Neurologist 2005;11:271-284
Husain AM. Electroencephalographic assessment of coma. J Clin Neurophysiol 2006;23:208-220
Kulkarni VP, Lin K, Benbadis SR. EEG findings in the persistent vegetative state. J Clin Neurophysiol 2007;24:433-437
Gilbert TT, Wagner MR, Halukurike V, Paz HL, Garland A. Use of bispectral electroencephalogram monitoring to assess neurologic status in unsedated, critically ill patients. Crit Care Med 2001;29:1996-2000
Schnakers C, Ledoux D, Majerus S et al. Diagnostic andprognostic use of bispectral index in coma, vegetative state and related disorders. Brain Inj 2008;22:926-931
Gill M, Green SM, Krauss B. Can the bispectral index monitor quantify altered level of consciousness in emergency department patients? Acad Emerg Med 2003;10:175-179
Glass PS, Bloom M, Kearse L, Rosow C, Sebel P, Manberg P. Bispectral analysis measures sedation and memory effects of propofol, midazolam, isoflurane, and alfentanil in healthy volunteers. Anesthesiology 1997;86: 836-847
Aspect Medical Systems, Bispectral Index Monitoring System: Operating Manual. Newton, MA; Aspect Medical Systems 2000
Drummond JC. Monitoring depth of anesthesia: with emphasis on the application of the bispectral index and the middle latency auditory evoked response to the prevention of recall. Anesthesiology 2000;93:876-882
Lin M, Chan H, Fang S. Linear and nonlinear EEG indexes in relation to the severity of coma. Conf Proc IEEE Eng Med Biol Soc 2005;5:4580-4583
Schnakers C, Majerus S, Laureys S. Bispectral analysis of electroencephalogram signals during recovery from coma: preliminary findings. Neuropsychol Rehabil 2005;15: 381-388
Sarà M, Pistoia F. Complexity loss in physiological time series of patients in a vegetative state. Nonlinear Dynamics Psychol Life Sci 2010;14:1-13
Wu D, Cai G, Yuan Y et al. Application of nonlinear dynamics analysis in assessing unconsciousness: a preliminary study. Clin Neurophysiol 2011;122:490-498
Navarro X. Chapter 27: Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 2009;87:83-505
Wennervirta J, Salmi T, Hynynen M et al. Entropy is more resistant to artifacts than bispectral index in brain-dead organ donors. Intensive Care Med 2007;33:133-136
Vivien B, Langeron O, Riou B. Entropy and bispectral index in brain-dead organ donors. Intensive Care Med 2007;33:919-920
Wheeler P, Hoffman WE, Baughman VL, Koenig H. Response entropy increases during painful stimulation. J Neurosurg Anesthesiol 2005;17:86-90
Choi YS, Koenig MA, Jia X, Thakor NV. Multiresolution entropy measure for neuronal multiunit activity. Conf Proc IEEE Eng Med Biol Soc 2009;2009:4715-5718
Pistarini C, Molteni F. New technologies and high specialization rehabilitation. Funct Neurol 2009;24:169-171
Giacino JT, Hirsch J, Schiff N, Laureys S. Functional neuroimagng applications for assessment and rehabilitation planning in patients with disorders of consciousness. Arch Phys Med Rehabil 2006;87(12 Suppl 2):S67-S76
Luccichenti G, Sabatini U. Colouring rehabilitation with functional neuroimaging. Funct Neurol 2009;24:189-193