[en] Fluorescent-labeled aliphatic polyesters are essential materials for in vitro and in vivo studies of the behavior of these biodegradable polymers in interaction with cells or in a body. In particular, the direct cellular localization of drug delivery systems based on these materials allows better understanding of the internalization mechanism and determination of the pharmacokinetics. Polylactide-co-glycolide (PLGA) is a rapidly degradable copolymer widely used in pharmaceutics and nanomedecine. It was prepared by ring-opening polymerization of lactide and glycolide in order to obtain a well-defined material to investigate conditions allowing the covalent linkage of a fluorescent dye (fluorescein) while preserving the macromolecular characteristics of the polymer. The success of the functionalization was ascertained by proton nuclear magnetic resonance (1H NMR), size-exclusion chromatography (SEC) and fluorescence spectroscopy.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Materials science & engineering Chemistry
Author, co-author :
Freichels, Hélène; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Danhier, Fabienne; Université catholique de Louvain (UCL), Brussels > Unité de Pharmacie Galénique / Louvain Drug Research Institute (LDRI)
Préat, Véronique; Université catholique de Louvain (UCL), Brussels > Unité de Pharmacie Galénique / Louvain Drug Research Institute (LDRI)
Lecomte, Philippe ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Jérôme, Christine ; Université de Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Language :
English
Title :
Fluorescent labeling of degradable poly(lactide-co-glycolide) for cellular nanoparticles tracking in living cells
Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 2007; 65: 259-69.
Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 2005; 109: 169-88.
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: Theory to practice. Pharmacol Rev 2001; 53: 283-318.
Jain RA. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials 2000; 21: 2475-90.
Lin SY, Chen KS, Teng HH, Li MJ. In vitro degradation and dissolution behaviours of microspheres prepared by three low molecular weight polyesters. J Microencapsul 2000; 17: 577-86.
Shive M, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microsphere. Adv Drug Deliv Rev 1997; 28: 5-24.
Alexis F, Venkatraman S, Rath SK, Gan LH. Some insight into hydrolytic scission mechanisms in bioerodible polyesters. J Appl Polym Sci 2006; 102: 3111-7.
Sutton D, Nasongkla N, Blanco E, Gao J. Functionalized Micellar Systems for Cancer Targeted Drug Delivery. Pharm Res 2007; 24: 1029-46.
Van Butsele K, Jérôme R, Jérôme C. Functional amphiphilic and biodegradable copolymers for intravenous vectorisation. Polymer (Guildf) 2007; 48: 7431-43.
McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998; 6: 153-63.
Horisawa E, Kubota K, Tuboi I, et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm Res 2002; 19: 132-9.
Tosi G, Rivasi F, Gandolfi F, Costantino L, Vandelli MA, Forni F. Conjugated poly(D,L-lactide-co-glycolide) for the preparation of in vivo detectable nanoparticles. Biomaterials 2005; 26: 4189-95.
Kim SH, Jeong JH, Chun KW, Park TG. Target-Specific Cellular Uptake of PLGA Nanoparticles Coated with Poly(l-lysine)- Poly(ethylene glycol)-Folate Conjugate. Langmuir 2005; 21: 8852-7.
Albertsson A-C, Varma IK. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003; 4: 1466-86.
Stolnik S, Davies MC, Illum L, Davis SS, Boustta M, Vert M. The preparation of sub-200 nm biodegradable colloidal particles from poly(beta-malic acid-co-benzyl malate) copolymers and their surface modification with poloxamer and poloxamine surfactants. J Control Release 1994; 30: 57-67.
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55: R1-4.
Danhier F, Vroman B, Lecouturier N, et al. Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J Control Release 2009; 140: 166-73.
Kricheldorf HR, Jonte JM, Berl M. Polylactones. 3. Copolymerization of glycolide with L,L- lactide and other lactones. Makromol Chem 1985; 12: 25-38.
Cao L-W, Wang H, Li J-S, Zhang H-S. 6-Oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl)fluorescein as a new fluorescent labeling reagent for aliphatic amines in environmental and food samples using high-performance liquid chromatography. J Chromatogr A 2005; 1063: 143-51.
Fievez V, Plapied L, des Rieux A, et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm 2009; 73: 16-24.
Fievez V, Plapied L, Plaideau C, et al. In vitro identification of targeting ligands of human M cells by phage display. Int J Pharm 2010; 394: 35-42.
Garinot M, Fievez V, Pourcelle V, et al. PEGylated PLGAbased nanoparticles targeting M cells for oral vaccination. J Control Release 2007; 120: 195-204.