Kinetic energy release distributions; Dissociative photoionization; Two sector mass spectrometer; Maximum entropy method; Orbiting transition state theory; Ab initio calculations; Conical intersection; 1,1-C2H2F2
Abstract :
[en] The kinetic energy release distributions (KERDs) for the fluorine atom loss from the 1,1-difluoroethene cation have been recorded with two spectrometers in two different energy ranges. A first experiment uses dissociative photoionization with the He(I) and Ne(I) resonance lines, providing the ions with a broad internal energy range, up to 7 eV above the dissociation threshold. The second experiment samples the metastable range, and the average ion internal energy is limited to about 0.2 eV above the threshold. In both energy domains, KERDs are found to be bimodal. Each component has been analyzed by the maximum entropy method. The narrow, low kinetic energy components display for both experiments the characteristics of a statistical, simple bond cleavage reaction: constraint equal to the square root of the fragment kinetic energy and ergodicity index higher than 90%. Furthermore, this component is satisfactorily accounted for in the metastable time scale by the orbiting transition state theory. Potential energy surfaces corresponding to the five lowest electronic states of the dissociating 1,1-C2H2F2+ ion have been investigated by ab initio calculations at various levels. The equilibrium geometry of these states, their dissociation energies, and their vibrational wavenumbers have been calculated, and a few conical intersections between these surfaces have been identified. It comes out that the ionic ground state (X) over tilde B-2(1) is adiabatically correlated with the lowest dissociation asymptote. Its potential energy curve increases in a monotonic way along the reaction coordinate, giving rise to the narrow KERD component. Two states embedded in the third photoelectron band ( (B) over tilde (2)A(1), at 15.95 eV and (C) over tilde B-2(2) at 16.17 eV) also correlate with the lowest asymptote at 14.24 eV. We suggest that their repulsive behavior along the reaction coordinate be responsible for the KERD high kinetic energy contribution.
Research Center/Unit :
Laboratoire de Dynamique Moléculaire
Disciplines :
Chemistry
Author, co-author :
Gridelet, Evelyne
Dehareng, Dominique ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Locht, Robert ; Université de Liège - ULiège > Département de Chimie (Faculté des Sciences) > Laboratoire de Dynamique Moléculaire (Sciences)
Lorquet, Andrée ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de dynamique moléculaire
Lorquet, Jean-Claude ; Université de Liège - ULiège > Département de Chimie (Faculté des sciences) > Laboratoire de Dynamique Moléculaire (Sciences)
Leyh, Bernard ; Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de dynamique moléculaire
Language :
English
Title :
Ground and Excited State Dissociation Dynamics of Ionized 1,1-Difluoroethene
Alternative titles :
[fr] Dynamique de la dissociation des états fondamental et excité du 1,1-difluoroéthylène ionisé.
F.R.S.-FNRS - Fonds de la Recherche Scientifique BELSPO - Belgian Federal Science Policy Office
Funding text :
E.G. is grateful to Dr D. Fati for many fruitful discussions. This work has been supported by the “Actions de Recherche Concertée (ARC)” (Convention 99/04-245, Direction de la Recherche Scientifique-Communauté Française de Belgique) and the F.N.R.S. (Belgium). D.D.’s contribution was supported by the Belgian ‘Programme des Pôles d’Attraction Interuniversitaire’ (PAI n° P4/03) initiated by the Belgian State, Prime Minister’s Office, Federal Office
of Scientific, Technical and Cultural Affairs.
Brehm, B.; Frey, R.; Kuestler, A.; Eland, J. H. D. Int. J. Mass Spectrom. Ion Phys. 1974, 13, 251.
Levine, R. D.; Kinsey, J. L. In Atom-Molecule Collision Theory. A Guide for the Experimentalist; Bernstein, R. B., Ed.; Plenum: New York, 1979.
Levine, R. D.; Bernstein, R. B. In Dynamics of Molecular Collisions; Miller, W. H., Ed.; Plenum: New York, 1976; Part B.
Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. J. Phys. Chem. Ref. Data 1988, 17 (1).
Urbain, P.; Leyh, B.; Remacle, F.; Lorquet, A. J.; Flammang, R.; Lorquet, J. C. J. Chem. Phys. 1999, 110, 2911.
Fati, D.; Lorquet, A. J.; Locht, R.; Lorquet, J. C.; Leyh, B. J. Phys. Chem. A 2004, 108, 9777.
Locht, R. Int. J. Mass Spectrom. Ion Processes 1995, 148, L17.
Servais, C.; Locht, R. Chem. Phys. Lett. 1995, 236, 96.
Hoxha, A.; Leyh, B.; Locht, R. Rapid Commun. Mass Spectrom. 1999, 13, 275.
Gridelet, E.; Locht, R.; Lorquet, A. J.; Lorquet, J. C.; Leyh, B. Int. J. Mass Spectrom. 2003, 228, 389.
Barber, M.; Elliot, R. M. Proceedings of the 12th Annual Conference on Mass Spectrometry, Montreal, ASTM E-14, 1964.
Jennings, K. R. J. Chem. Phys. 1965, 43, 4176.
Barber, M.; Green, B. N.; Wolstenholme, W. A.; Jennings, K. R. Adv. Mass Spectrom. 1968, 4, 89.
Holmes, J. L.; Osborne, A. D. Int. J. Mass Spectrom. Ion Phys. 1977, 23, 189.
Cooks, R. G.; Beynon, J. H.; Caprioli, R. M.; Lester, G. R. Metastable Ions; Elsevier: Amsterdam, The Netherlands, 1973.
Beynon, J. H.; Fontaine, A. E.; Lester, G. R. Int. J. Mass Spectrom. Ion Phys. 1972, 8, 341.
Szilagyi, Z.; Vekey, K. Eur. Mass Spectrom. 1995, 1, 507.
Rumpf, B. A.; Derrick, P. J. Int. J. Mass Spectrom. Ion Processes 1988, 82, 239.
Yeh, I. C.; Kim, M. S. Rapid Commun. Mass Spectrom. 1992, 6, 115.
Güthe, F.; Baumgärtel, H.; Weitzel, K. M. J. Phys. Chem. A 2001, 105, 7508.
Baer, T.; Hase, W. L. Unimolecular Reaction Dynamics. Theory and Experiments; Oxford University Press: New York, 1996.
Levine, R. D. Adv. Chem. Phys. 1981, 47, 239.
Levine, R. D.; Bernstein, R. B. Molecular Reaction Dynamics and Chemical Reactivity; Oxford University: New York, 1987.
Alhassid, Y.; Levine, R. D. J. Chem. Phys. 1977, 67, 4321.
Urbain, P.; Remade, F.; Leyh, B.; Lorquet, J. C. J. Phys. Chem. 1996, 100, 8003.
Urbain, P.; Leyh, B.; Remacle, F.; Lorquet, J. C. Int. J. Mass Spectrom. 1999, 185-187, 155.
Hoxha, A.; Locht, R.; Lorquet, A. J.; Lorquet, J. C.; Leyh, B. J. Chem. Phys. 1999, 111, 9259.
Iachello, F.; Levine, R. D. Europhys. Lett. 1987, 4, 389.
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.
Jensen, F. Introduction to computational chemistry; Wiley: New York, 1999.
Scott, A. P.; Radom, L. J. Phys. Chem. 1996, 100, 16502.
Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific Publications: Oxford, U.K., 1990.
Lee, T. G.; Park, S. C.; Kim, M. S. J. Chem. Phys. 1996, 104, 4517.
Choi, T. H.; Park, S. T.; Kim, M. S. J. Chem. Phys. 2001, 114, 6051.
Zamir, E.; Levine, R. D. Chem. Phys. 1980, 52, 253.
Lorquet, J. C. In The Structure, Energetics and Dynamics of Organic Ions; Baer, T., Ng, C. Y., Powis, I., Eds.; Wiley: Chichester, U.K., 1996; p 167.
Galloy, C.; Lecomte, C.; Lorquet, J. C. J. Chem. Phys. 1982, 77, 4522.
Lane, I. C.; Powis, I. J. Phys. Chem. 1993, 97, 5803.
Hatherly, P. A.; Smith, D. M.; Tuckett, R. P. Z. Phys. Chem. (Muenchen) 1996, 195, 97.
Gentry, W. R.; Giese, C. F. J. Chem. Phys. 1977, 67, 2355.
Locht, R.; Leyh, B. Unpublished results.
Bieri, G.; Von Niessen, W.; Aasbrink, L.; Svensson, A. Chem. Phys. 1981, 60, 61.
(a) Hegarty, D.; Robb, M. A. Mol. Phys. 1979, 38, 1795.
(b) Eade, R. H. E.; Robb, M. A. Chem. Phys. Lett. 1981, 83, 362.
(c) Bernardi, F.; Bottini, A.; McDougall, J. J. W.; Robb, M. A.; Schlegel, H. B. Faraday Symp. Chem. Soc. 1984, 19, 137.
Nakamura, H. Nonadiabatic Transition. Concepts, Basic Theories and Applications; World Scientific: Singapore, 2002.
(a) Yarkony, D. R. In Conical Intersections. Electronic Structure, Dynamics and Spectroscopy; Domcke, W., Yarkony, D. R., Koppel, H., Eds.; Advanced Series in Chemical Physics; World Scientific: Singapore, 2004; p 129.
(b) Koppel, H. In Conical Intersections. Electronic Structure, Dynamics and Spectroscopy; Domcke, W., Yarkony, D. R., Koppel, H., Eds.; Advanced Series in Chemical Physics; World Scientific: Singapore, 2004; p 175.
Lorquet, J. C.; Leyh, B. Nonadiabatic reactions. In The Encyclopedia of Mass Spectrometry; Armentrout, P. B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Vol. 1, p 33.
Leyh, B.; Lorquet, J. C. Kinetic energy release distributions in mass spectrometry. In The Encyclopedia of Mass Spectrometry; Armentrout, P. B., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Vol. 1, p 17.
Forst W. Unimolecular reactions. A concise introduction; Cambridge University Press: Cambridge, U.K., 2003.
Chesnavich, W. J.; Bowers, M. T. J. Chem. Phys. 1977, 66, 2306.
Gridelet, E.; Lorquet, J. C.; Leyh, B. J. Chem. Phys. 2005, 122, 094106/1-14.
Miller, T. M.; Bederson, B. Adv. At. Mol. Phys. 1977, 13, 1.