[en] The analysis of HST-STIS FUV images has greatly and quickly advanced our knowledge of the magnetospheric mechanisms producing the auroral emissions on the giant planets. However, these studies were limited to the brightest emissions and very little has been said about the fainter emissions, mainly because of the lower S/N. We propose to image the faint auroral emissions on Jupiter which could not be observed with STIS. We will take full advantage of ACS/SBC's higher sensitivity to observe the diffuse auroral FUV emissions appearing poleward and directly equatorward of Jupiter's main auroral oval in the northern hemisphere. This proposal has the potential to reveal new magnetosphere-ionosphere coupling mechanisms especially those involving solar wind interactions with a giant planet.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
High resolution imaging of Jupiter's diffuse auroral emissions inside and outside the main oval during solar minimum.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.