[en] Plasminogen activator inhibitor-1 (PAI-1) paradoxically enhances tumor progression and angiogenesis; however, the mechanism supporting this role is not known. Here we provide evidence that PAI-1 is essential to protect endothelial cells (ECs) from FasL-mediated apoptosis. In the absence of host-derived PAI-1, human neuroblastoma cells implanted in PAI-1-deficient mice form smaller and poorly vascularized tumors containing an increased number of apoptotic ECs. We observed that knockdown of PAI-1 in ECs enhances cell-associated plasmin activity and increases spontaneous apoptosis in vitro. We further demonstrate that plasmin cleaves FasL at Arg144-Lys145, releasing a soluble proapoptotic FasL fragment from the surface of ECs. The data provide a mechanism explaining the proangiogenic activity of PAI-1.
Research Center/Unit :
Giga-Cancer - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Bajou, Khalid ; Université de Liège - ULiège > Département des sciences de la vie > Biologie et génétique moléculaire
Peng, H.
Laug, W. E.
Maillard, Catherine ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Foidart, Jean-Michel ; Université de Liège - ULiège > Département des sciences cliniques > Gynécologie - Obstétrique - Labo de biologie des tumeurs et du développement
Martial, Joseph ; Université de Liège - ULiège > Département des sciences de la vie > Biologie et génétique moléculaire
Declerck, Y. A.
Language :
English
Title :
Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aoudjit F., and Vuori K. Engagement of the alpha2beta1 integrin inhibits Fas ligand expression and activation-induced cell death in T cells in a focal adhesion kinase-dependent manner. Blood 95 (2000) 2044-2051
Aoudjit F., and Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: a role for c-flip and implications for anoikis. J. Cell Biol. 152 (2001) 633-643
Bajou K., Noel A., Gerard R.D., Masson V., Brunner N., Holst-Hansen C., Skobe M., Fusenig N.E., Carmeliet P., Collen D., and Foidart J.M. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularization. Nat. Med. 4 (1998) 923-928
Bajou K., Masson V., Gerard R.D., Schmitt P.M., Albert V., Praus M., Lund L.R., Frandsen T.L., Brunner N., Dano K., et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J. Cell Biol. 152 (2001) 777-784
Bajou K., Maillard C., Jost M., Lijnen R.H., Gils A., Declerck P., Carmeliet P., Foidart J.M., and Noel A. Host-derived plasminogen activator inhibitor-1 (PAI-1) concentration is critical for in vivo tumoral angiogenesis and growth. Oncogene 23 (2004) 6986-6990
Blasi F., and Verde P. Urokinase-dependent cell surface proteolysis and cancer. Semin. Cancer Biol. 1 (1990) 117-126
Bouchet D., Tesson L., Menoret S., Charreau B., Mathieu P., Yagita H., Duisit G., and Anegon I. Differential sensitivity of endothelial cells of various species to apoptosis induced by gene transfer of Fas ligand: role of FLIP levels. Mol. Med. 8 (2002) 612-623
Bugge T.H., Kombrinck K.W., Flick M.J., Daugherty C.C., Danton M.J., and Degen J.L. Loss of fibrinogen rescues mice from the pleiotropic effects of plasminogen deficiency. Cell 87 (1996) 709-719
Cappellesso S., Thibault G., Hoarau C., Watier H., Bardos P., and Lebranchu Y. Induction of Jurkat T-cell apoptosis by Fas ligand-transfected endothelial cells. Transplant. Proc. 32 (2000) 2737-2738
Cardier J.E., Schulte T., Kammer H., Kwak J., and Cardier M. Fas (CD95, APO-1) antigen expression and function in murine liver endothelial cells: implications for the regulation of apoptosis in liver endothelial cells. FASEB J. 13 (1999) 1950-1960
Carmeliet P. Angiogenesis in health and disease. Nat. Med. 9 (2003) 653-660
Carmeliet P., Stassen J.M., Schoonjans L., Ream B., Van den Oord J.J., De Mol M., Mulligan R.C., and Collen D. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis. J. Clin. Invest. 92 (1993) 2756-2760
Chan J.C., Duszczyszyn D.A., Castellino F.J., and Ploplis V.A. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am. J. Pathol. 159 (2001) 1681-1688
Chantrain C.F., Shimada H., Jodele S., Groshen S., Ye W., Shalinsky D.R., Werb Z., Coussens L.M., and DeClerck Y.A. Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 64 (2004) 1675-1686
Chavakis E., and Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler. Thromb. Vasc. Biol. 22 (2002) 887-893
Dano K., Behrendt N., Hoyer-Hansen G., Johnsen M., Lund L.R., Ploug M., and Romer J. Plasminogen activation and cancer. Thromb. Haemost. 93 (2005) 676-681
Deng G., Curriden S.A., Wang S., Rosenberg S., and Loskutoff D.J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?. J. Cell Biol. 134 (1996) 1563-1571
Dimova E.Y., and Kietzmann T. Cell type-dependent regulation of the hypoxia-responsive plasminogen activator inhibitor-1 gene by upstream stimulatory factor-2. J. Biol. Chem. 281 (2006) 2999-3005
Foekens J.A., Look M.P., Peters H.A., van Putten W.L., Portengen H., and Klijn J.G. Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J. Natl. Cancer Inst. 87 (1995) 751-756
Folkman J. Angiogenesis and apoptosis. Semin. Cancer Biol. 13 (2003) 159-167
Ganesh S., Sier C.F., Griffioen G., Vloedgraven H.J., de Boer A., Welvaart K., van de Velde C.J., van Krieken J.H., Verheijen J.H., and Lamers C.B. Prognostic relevance of plasminogen activators and their inhibitors in colorectal cancer. Cancer Res. 54 (1994) 4065-4071
Ji J., Wernli M., Mielgo A., Buechner S.A., and Erb P. Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA. Gene Ther. 12 (2005) 678-684
Kortlever R.M., and Bernards R. Senescence, wound healing and cancer: the PAI-1 connection. Cell Cycle 5 (2006) 2697-2703
Luttun A., Lupu F., Storkebaum E., Hoylaerts M.F., Moons L., Crawley J., Bono F., Poole A.R., Tipping P., Herbert J.M., et al. Lack of plasminogen activator inhibitor-1 promotes growth and abnormal matrix remodeling of advanced atherosclerotic plaques in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 22 (2002) 499-505
Mitsiades N., Yu W.H., Poulaki V., Tsokos M., and Stamenkovic I. Matrix metalloproteinase-7-mediated cleavage of Fas ligand protects tumor cells from chemotherapeutic drug cytotoxicity. Cancer Res. 61 (2001) 577-581
Mogi M., Fukuo K., Yang J., Suhara T., and Ogihara T. Hypoxia stimulates release of the soluble form of fas ligand that inhibits endothelial cell apoptosis. Lab. Invest. 81 (2001) 177-184
Nagase H., Enghild J.J., Suzuki K., and Salvesen G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl)mercuric acetate. Biochemistry 29 (1990) 5783-5789
Nykjaer A., Conese M., Christensen E.I., Olson D., Cremona O., Gliemann J., and Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. EMBO J. 16 (1997) 2610-2620
Pepper M.S. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21 (2001) 1104-1117
Powell W.C., Fingleton B., Wilson C.L., Boothby M., and Matrisian L.M. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Curr. Biol. 9 (1999) 1441-1447
Ramos-DeSimone N., Hahn-Dantona E., Sipley J., Nagase H., French D.L., and Quigley J.P. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J. Biol. Chem. 274 (1999) 13066-13076
Sata M., and Walsh K. TNFalpha regulation of Fas ligand expression on the vascular endothelium modulates leukocyte extravasation. Nat. Med. 4 (1998) 415-420
Sugiura Y., Ma L.Q., Sun B., Shimada H., Laug W.E., Seeger R.C., and DeClerck Y.A. The plasminogen-plasminogen activator (PA) system in neuroblastoma: role of PA inhibitor-1 in metastasis. Cancer Res. 59 (1999) 1327-1336
Tanaka M., Suda T., Takahashi T., and Nagata S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J. 14 (1995) 1129-1135
Vargo-Gogola T., Crawford H.C., Fingleton B., and Matrisian L.M. Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Arch. Biochem. Biophys. 408 (2002) 155-161
Volpert O.V., Zaichuk T., Zhou W., Reiher F., Ferguson T.A., Stuart P.M., Amin M., and Bouck N.P. Inducer-stimulated Fas targets activated endothelium for destruction by anti-angiogenic thrombospondin-1 and pigment epithelium-derived factor. Nat. Med. 8 (2002) 349-357
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.