[en] This study focused on the ingestion and assimilation of Posidonia oceanica (L.) Delile litter by Gammarella fucicola Leach and Gammarus aequicauda Martynov, two dominant detritivore amphipods of the P. oceanica leaf litter. Scanning electron microscope observations indicated that leaf litter is highly colonized by diverse diatoms, bacteria and fungi, which may constitute a potential food source for the litter fauna. Gut content observations demonstrated that these species eat P. oceanica litter, and that this item is an important part of their ingested diet. Stable isotope analyses showed that the species do not experience the same gains from the ingested Posidonia. Gammarella fucicola displayed isotopic values, suggesting a major contribution of algal material (micro- and macro-epiphytes or drift macro-algae). On the other hand, the observed isotopic values of G. aequicauda indicated a more important contribution of P. oceanica carbon. The mixing model used agreed with this view, with a mean contribution of P. oceanica to approximately 50% (range 40-55%) of the assimilated biomass of G. aequicauda. This demonstrated that the two species, suspected to be detritus feeders, display in reality relatively different diets, showing that a certain degree of trophic diversity may exist among the detritivore community of the seagrass litter.
Research Center/Unit :
MARE - Centre Interfacultaire de Recherches en Océanologie - ULiège
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adams TS, Sterner RW. 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45:601-7.
Borges AV. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28:3-27.
Cebrian J, Duarte CM. 2001. Detrital stocks and dynamics of the seagrass Posidonia oceanica (L.) Delile in the Spanish Mediterranean. Aquatic Botany 70:295-309.
Connolly RM, Guest MA, Melville AJ, Oakes JM. 2004. Sulphur stable isotopes separate producers in marine food web analysis. Oecologia 138:161-7.
Connolly RM, Hindell JS, Gorman D. 2005. Seagrass and epiphytic algae support nutrition of a fisheries species, Sillago schomburgkii, in adjacent intertidal habitats. Marine Ecology Progress Series 286:69-79.
Dannovaro R, Gambi C, Mirto S. 2002. Meiofaunal production and energy transfer efficiency in a seagrass Posidonia oceanica bed in the western Mediterranean. Marine Ecology Progress Series 234:95-104.
Dauby P, Poulicek M. 1995. Methods for removing epiphytes from seagrasses: SEM observations on treated leaves. Aquatic Botany 52:217-28.
Duarte CM, Cebrian J. 1996. The fate of marine autotrophic production. Limnology and Oceanography 41:1758-66.
Duarte CM, Middelburg JJ, Caraco N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1-8.
Fenchel T. 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnology and Oceanography 15:14-20.
Gallmetzer I, Pflugfelder B, Zekely J, Ott JA. 2005. Macrofauna diversity in Posidonia oceanica detritus: distribution and diversity of mobile macrofauna in shallow sublittoral accumulation of Posidonia oceanica detritus. Marine Biology 147:517-23.
Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V. 1992. Depth and seasonal distribution of some groups of the vagile fauna of the Posidonia oceanica leaf stratum: structural and trophic analyses. PSZNI: Marine Ecology 13:17-39.
Gattuso J-P, Frankignoulle M, Wollast R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annual Review of Ecology and Systematics 29:405-34.
Gobert S, Kyramarios M, Lepoint G, Pergent-Martini C, Bouquegneau JM. 2003. Variations à différentes échelles spatiales de l'herbier à Posidonia oceanica (L) Delile; effets sur les paramètres physico-chimiques du sédiment. Oceanologica Acta 26:199-207.
Gobert S, Laumont N, Bouquegneau JM. 2002. Posidonia oceanica meadow: a low nutrient high chlorophyll (LNHC) system? BMC Ecology 2:9.
Heck KL, Valentine JF. 2006. Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330:420-36.
Hobbie EA, Weber NS, Trappe JM. 2001. Mycorrhizzal vs saprophytic status of fungi: the isotopic evidence. New Phytologist 150:601-10.
Holmer M, Duarte CM, Boschker HTS, Barrón C. 2004. Carbon cycling and bacterial carbon sources in pristine and impacted Mediterranean seagrass sediments. Aquatic Microbial Ecology 36:227-37.
Hyndes GA, Lavery P. 2005. Does transported seagrass provide an important trophic link in unvegetated, nearshore areas? Estuarine Coastal and Shelf Sciences 63:633-43.
Janssens M, Hoffman L, Demoulin V. 1993. Cartographie des macroalgues dans la région de Calvi (Corse): comparaison après 12 ans (1978-79, 1990-91). Lejeunia 141:1-62.
Johnston M, Johnton D, Richardson A. 2005. Digestive capabilities reflect the major food sources in three species of talitrid amphipods. Comparative Biochemistry and Physiology B 140:251-7.
Klap VA, Hemminga MA, Boon JJ. 2000. Retention of lignin in seagrasses: angiosperms that returned to sea. Marine Ecology Progress Series 194:1-11.
Kneib RT, Newell SY, Hermano ET. 1997. Survival, growth and reproduction of the salt-marsh amphipod Uhlorchestia spartinophila reared on natural diets of senescent and dead Spartina alterniflora leaves. Marine Biology 128:423-31.
Lepoint G, Nyssen F, Gobert S, Dauby P, Bouquegneau JM. 2000. Relative impact of a Posidonia seagrass bed and its adjacent epilithic algal community in consumer diet. Marine Biology 136:513-8.
McCutchan JH, Lewis WM, Kendall C, McGrath CC. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulphur. Oikos 102:378-90.
McGrath CC, Matthews RA. 2000. Cellulase activity in freshwater amphipod Gammarus lacustris. Journal of the North American Benthological Society 19:298-307.
Mateo MA, Romero J. 1996. Evaluating leaf litter seagrass decomposition: an experimental comparison between litter-bag and oxygen-uptake methods. Journal of Experimental Marine Biology and Ecology 202:97-106.
Mateo MA, Romero J. 1997. Detritus dynamics in the seagrass Posidonia oceanica: elements for an ecosystem carbon and nutrient budget. Marine Ecology Progress Series 151:43-53.
Mazzella L, Buia MC, Gambi MC, Lorenti M, Russo GF, Scipione MB, Zupo V. 1992. Plant-animal trophic relationships in the Posidonia ecosystem of the Mediterranean Sea: a review. In: John DM, Hawkins SJ, Price JH, editors. Plant-Animal Interactions in the Marine Benthos. Systematic Association Special Vol. 46. Oxford: Clarendon Press. p 165-87.
Moore JC, Berlow EL, Coleman DC, de Ruiter PC, Dong Q, Hastings A, et al. 2004. Detritus, trophic dynamics, and biodiversity. Ecological Letters 7:584-600.
Newell SY. 1996. Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. Journal of Experimental Marine Biology and Ecology 200:187-206.
Ott JA, Maurer L. 1977. Strategies of energy transfers from marine macrophytes to consumer level: the Posidonia oceanica example. In: Keegan BF, O'Ceidigh P, Boaden P, editors. Biology of Benthic Organisms. Oxford: Pergamon Press. p 493-502.
Pergent G, Rico-Raimondino V, Pergent-Martini C. 1997. Fate of primary production in Posidonia oceanica meadow of the Mediterranean. Aquatic Botany 43:307-21.
Pergent G, Romero J, Pergent-Martini C, Mateo MA, Boudouresque CF. 1994. Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica. Marine Ecology Progress Series 106:139-46.
Pergent-Martini C, Rico-Raimondino V, Pergent G. 1994. Primary production of Posidonia oceanica in the Mediterranean basin. Marine Biology 120:9-15.
Phillips DL, Gregg JW. 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127:171-9.
Phillips DL, Gregg JW. 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136:261-9.
Phillips DL, Newsome SD, Gregg JW. 2005. Combining sources in stable isotope mixing models: alternative methods. Oecologia 144:520-7.
Pinnegar JK, Polunin NVC. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13:225-31.
Pinnegar JK, Polunin NVC. 2000. Contributions of stable isotope data to elucidating food webs of Mediterranean rocky-littoral fishes. Oecologia 122:399-409.
Post DM. 2002. Using stable isotopes to estimate trophic position: models, methods and assumption. Ecology 83:703-18.
Romero J, Pergent G, Pergent-Martini C, Matéo MA, Regnier C. 1992. The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates and mineral stocks. PSZNI: Marine Ecology 13:69-83.
Ruffo S. 1982. The Amphipoda of the Mediterranean, Part 1. Mémoires de l. Institut Océanographique de Monaco 13:1-363.
Ruffo S. 1998. The Amphipoda of the Mediterranean, Part 4. Mémoires de l. Institut Océanographique de Monaco 13:815-959.
Taylor AFS, Fransson PM, Högberg P, Högberg MN, Plamboeck AH. 2003. Species level patterns in 13C and 15N abundance of ectomycorrhizal and saprophytic fungal sporocarps. New Phytologist 159:757-74.
Valentine J, Heck KLJ. 1999. Seagrass herbivory: evidence for the continued grazing of marine grasses. Marine Ecology Progress Series 176:291-302.
Vanderklift MA, Ponsard S. 2003. Source of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169-82.
Vander Zanden MJ, Rasmussen JB. 2001. Variation in δ15N and δ13C trophic fractionation: implication for aquatic food web studies. Limnology and Oceanography 46:2061-6.
Vetter EW. 1998. Population dynamics of a dense assemblage of marine detritivores. Journal of Experimental Marine Biology and Ecology 226:131-61.
Vizzini S, Mazzola A. 2003. Seasonal variations in the stable carbon and nitrogen isotope ratios δ13C/12C and 15N/14N of primary producers and consumers in a western Mediterranean coastal lagoon. Marine Biology 142:1009-18.
Walker DI, Pergent G, Fazi S. 2001. Seagrass decomposition. In: Short FT, Cole RG, editors. Global Seagrass Research Methods. Amsterdam: Elsevier.
Wittman K, Scipione MB, Fresi E. 1981. Some laboratory experiments on the activity of the macrofauna in the fragmentation of detrital leaves of Posidonia oceanica (L) Delile. Rapport de la Commission Internationale pour 1. Exploration de la mer Méditerranée 27:205-6.
Zimmer M, Bartholomé S. 2003. Bacterial endosymbionts in Asellus aquaticus (Isopoda) and Gammarus pulex (Amphipoda) and their contribution to digestion. Limnology and Oceanography 48:2208-13.
Zimmer M, Danko JP, Pennings SC, Danford AR, Carefoot TH, Ziegler A, Uglow RF. 2002. Cellulose digestion and phenol oxidation in coastal isopods (Crustacea: Isopoda). Marine Biology 140:1207-13.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.