Keywords :
Adrenal Glands/physiology; Animals; Brain/metabolism; Corticosterone/blood; Corticotropin-Releasing Hormone/metabolism; Glucose/metabolism; Hypothalamo-Hypophyseal System; Injections, Intraventricular; Male; Mice; Mice, Inbred C57BL; Peptide Fragments/administration & dosage
Abstract :
[en] Corticotropin-releasing factor (CRF) is well known for its role in the hypothalamic-pituitary-adrenocortical (HPA) axis and its involvement in stress and anxiety. CRF acts via two main receptor subtypes, CRF(1) and CRF(2). Other endogenous CRF-related peptide ligands are the Urocortins 1 and 2 and Stresscopin. While CRF is thought to mediate its anxiogenic-like properties through CRF(1), the role of CRF(2) and its endogenous ligands Urocortin 2 and Stresscopin are less clear, with a suggested role in mediating the delayed effects of stress. Measurement of local cerebral glucose utilization (LCGU) provides an estimate of neuronal activity, and is of potential use as a translational tool in comparison to FDG PET. We hypothesized that comparison of the patterns of metabolic changes induced by CRF-related peptides could provide further information on their role in the brain. The present studies examined the effects of CRF-related peptides on LCGU, and the role of CRF(1) and CRF(2) in the CRF-induced LCGU response. CRF induced increases in LCGU in hypothalamic, thalamic, cerebellar and hippocampal regions, and further studies using antagonists or mutant mice lacking a functional CRF(1) receptor clearly suggested a role for CRF(2) in this effect. Urocortin 1 increased LCGU in a dissected hindbrain region. However, central administration of the CRF(2)-selective agonists Urocortin 2 and Stresscopin failed to affect LCGU, which may suggest ligand-dependent receptor activation within the CRF system. The present data supports a role for CRF(2) in the regulation of neuronal glucose metabolism.
Scopus citations®
without self-citations
1