Levine, R. D.: Molecular Reaction Dynamics. Cambridge University Press, Cambridge (2005).
Levine, R. D., Bernstein, R. B.: Energy disposal and energy consumption in elementary chemical-reactions-information theoretic approach. Acc. Chem. Res. 7, 393-400 (1974).
Remacle, F., et al.: Information-theoretic analysis of phenotype changes in early stages of carcinogenesis. Proc. Natl. Acad. Sci. USA 107(22), 10324-10329 (2010).
Graeber, T. G., et al.: Maximal entropy inference of oncogenicity from phosphorylation signaling. Proc. Natl. Acad. Sci. USA 107(13), 6112-6117 (2010).
Levine, R. D.: Invariance and the distribution of maximal entropy. Kinam 3, 403 (1981).
Levine, R. D.: Dynamical symmetries. J. Phys. Chem. 89, 2122 (1985).
Levine, R. D.: Information theoretical approach to inversion problems. J. Phys. A 13, 91-108 (1980).
Callen, H. B.: Thermodynamics and an Introduction to Thermostatics. Wiley, New York (1985).
Remacle, F., Levine, R. D.: The elimination of redundant constraints in surprisal analysis of unimolecular dissociation and other endothermic processes. J. Phys. Chem. A 113(16), 4658-4664 (2009).
Mayer, J. E., Mayer, M. G.: Statistical Mechanics. Wiley, New York (1966).
Margolin, A. A., Califano, A.: Theory and limitations of genetic network inference from microarray data. Ann. N. Y. Acad. Sci. 1115, 51-72 (2007).
Ziv, E., Nemenman, I., Wiggins, C. H.: Optimal signal processing in small stochastic biochemical networks. PLoS ONE 2(10), e1077 (2007).
Banavar, J. R., Maritan, A., Volkov, I.: Applications of the principle of maximum entropy: from physics to ecology. J. Phys., Condens. Matter 22(6) (2010).
Krawitz, P., Shmulevich, I.: Entropy of complex relevant components of Boolean networks. Phys. Rev. E 76 (2007).
Lezon, T. R., et al.: Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc. Natl. Acad. Sci. USA 103(50), 19033-19038 (2006).
Locasale, J. W., Wolf-Yadlin, A.: Maximum entropy reconstructions of dynamic signaling networks from quantitative proteomics data. PLoS ONE 4(8) (2009).
Mora, T., et al.: Maximum entropy models for antibody diversity. Proc. Natl. Acad. Sci. USA 107(12), 5405-5410 (2010).
Roudi, Y., Nirenberg, S., Latham, P. E.: Pairwise maximum entropy models for studying large biological systems: when they can work and when they can't. PLoS Comput. Biol. 5(5) (2009).
Theis, F. J., Bauer, C., Lang, E. W.: Comparison of maximum entropy and minimal mutual information in a nonlinear setting. Signal Process. 82(7), 971-980 (2002).
Schneidman, E., et al.: Network information and connected correlations. Phys. Rev. Lett. 91, 238701 (2003).
Tkacik, G., Calan, C. G., Jr., Bialek, W.: Information flow and optimization in transcriptional regulation. Proc. Natl. Acad. Sci. USA 105, 12265-12270 (2008).
Skaggs, B. J., et al.: Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proc. Natl. Acad. Sci. USA 103(51), 19466-19471 (2006).
Alhassid, Y., Levine, R. D.: Experimental and inherent uncertainties in the information theoretic approach. Chem. Phys. Lett. 73(1), 16-20 (1980).
Kinsey, J. L., Levine, R. D.: Performance criterion for information theoretic data-analysis. Chem. Phys. Lett. 65(3), 413-416 (1979).
Agmon, N., Alhassid, Y., Levine, R. D.: Algorithm for finding the distribution of maximal entropy. J. Comput. Phys. 30(2), 250-258 (1979).
Janes, K. A., Lauffenburger, D. A.: A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 10(1), 73-80 (2006).
van den Berg, R. A., et al.: Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).
Bar-Even, A., et al.: Noise in protein expression scales with natural protein abundance. Nat. Genet. 38(6), 636-643 (2006).