[en] Volume phase holographic gratings (VPHGs) possess unique properties that make them attractive for numerous applications. After reviewing major VPHG characteristics through theory, we discuss some aspects of the dichromated gelatin recording material and the holographic recording process. The large-scale VPHG research facility set up at the Center Spatial de Liege enables production of VPHGs up to 380 mm in diameter, with fringe frequencies from 315 to 3300 Ip/mm. We describe the work that has been undertaken in our laboratory to remove the last limitations inherent in VPHGs. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Lemaire, Philippe ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Jamar, Claude ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO)
Language :
English
Title :
Volume phase holographic gratings: large size and high diffraction efficiency
Publication date :
November 2004
Journal title :
Optical Engineering
ISSN :
0091-3286
eISSN :
1560-2303
Publisher :
Spie-Int Society Optical Engineering, Bellingham, United States - Washington
S. C. Barden, J. A. Arns, and W. S. Colburn, "Volume-phase holographic gratings and their potential for astronomical applications," in Optical Astronomical Instrumentation, S. D'Odorico, Ed., Proc. SPIE 3355, 866-876 (1998).
G. J. Monnet, H. Dekker, and G. Rupprecht, "Volume phase holographic gratings at ESO," in Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, A. M. Larar and M. G. Mlynczak, Eds., Proc. SPIE 4485, 439-444 (2002).
J. A. Aros, W. S. Colburn, and S. C. Barden, "Volume phase gratings for spectroscopy, ultrafast laser compressors, and wavelength division multiplexing," in Current Developments in Optical Design and Optical Engineering VIII, R. E. Fischer and W. J. Smith, Eds., Proc. SPIE 3779, 313-323 (1999).
T. Shankoff, "Phase holograms in dichromated gelatin," Appl. Opt. 7(10), 2101-2105 (1968).
H. Kogelnik, "Coupled-wave theory of thick hologram gratings," Bell Syst. Tech. J. 48, 2909 (1969).
T. Gaylord and M. Moharam, "Thin and thick gratings: terminology clarification," Appl. Opt. 20(19), 3271-3273 (1981).
T. Gaylord and M. Moharam, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 71(7), 811-818 (1981).
M. G. Moharam and T. K. Gaylord, "Three-dimensional vector coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am. 73 9), 1105-1112 (1983).
D. Meyerhofer, "Dichromated gelatin," in Holographic Recording Materials, H. Smith, Ed., Vol. 20, pp. 75-99, Springer Verlag, Berlin/ Heidelberg/New York (1977).
J. R. Magarios and D. J. Coleman, "Holographic mirrors," Opt. Eng. 24(5), 769-780 (1985).
B. Chang and C. D. Leonard, "Dichromated gelatin for the fabrication of holographic optical elements," Appl. Opt. 18(14), 2407-2417 (1979).
S. McGrew, "Color control in dichromated gelatin reflection holograms," Proc. SPIE 215, 24-31 (1985).
S. Sjölinder, "Swelling of dichromated gelatin film," Photograph. Sci. Eng. 28(5), 180-184 (1984).
O. Salminen and T. Keinonen, "A comparison of the reflection properties of dichromated gelatin gratings developed in different ways," J. Mod. Opt. 36(10), 1377-1383 (1989).
S. C. Barden, A. Camacho, and H. Yarborough, "Post-polishing VPH gratings for improved wavefront performance," in Specialized Optical Developments in Astronomy; Eli Atad-Ettedgui, S. D'Odorico, Ed., Proc. SPIE 4842, 39-42 (2002).