An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects
Machrafi, Hatim; Cavadias, Simeon; Guibert, Philippe
2008 • In Combustion and Flame, 155 (3), p. 476-489
Autoignition control; HCCI engine; Chemical additives; Dilution; External gas recirculation; Carbon monoxide; Nitrogen oxide; Formaldehyde
Abstract :
[en] In order to contribute to the solution of controlling the autoignition in a homogeneous charge compression ignition (HCCI) engine, parameters linked to external gas recirculation (EGR) seem to be of particular interest. Experiments performed with EGR present some difficulties in interpreting results using only the diluting and thermal aspect of EGR. Lately, the chemical aspect of EGR is taken more into consideration, because this aspect causes a complex interaction with the dilution and thermal aspects of EGR. This paper studies the influence of EGR on the autoignition process and particularly the chemical aspect of EGR. The diluents present in EGR are stimulated by N-2 and CO2, with dilution factors going from 0 to 46 vol%. For the chemically active species that could be present in EGR, the species 0 and 170 ppm, while that of CH2O alters between 0 and 1400 ppm. For the investigation of the effect of the chemical species on the autoignition, a fixed dilution factor of 23 vol% and a fixed EGR temperature of 70 degrees C are maintained. The inlet temperature is held at 70 degrees C, the equivalence ratios between 0.29 and 0.41, and the compression ratio at 10.2. The fuels used for the autoignition are n-heptane and PRF40. It appeared that CO, in the investigated domain, did not influence the ignition delays, while NO had two different effects. At concentrations up until 45 ppm, NO advanced that ignition delays for the PRF40 and at higher concentrations, the ignition delayed. The influence of NO on the autoignition of n-heptane seemed to be insignificant, probably due to the higher burn rate of n-heptane. CH2O seemed to delay the ignition. The results suggested that especially the formation of OH radicals or their consumption by the chemical additives determines how the reactivity of the autoignition changed. (C) 2008 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Disciplines :
Chemical engineering Engineering, computing & technology: Multidisciplinary, general & others Energy Physics
An experimental and numerical investigation on the influence of external gas recirculation on the HCCI autoignition process in an engine: Thermal, diluting, and chemical effects
Chen R., and Milovanovic N. Int. J. Therm. Sci. 41 (2002) 805-813
H. Zhao, Z. Peng, J. Williams, N. Ladommatos, Understanding the effects of recycled burnt gases on the controlled autoignition (CAI) combustion in four-stroke engines, in: Int. Fall Fuels and Lubricants Meeting and Exposition, SAE international, 2001-01-3607 (2001)
Faravelli T., Frassoldati A., and Ranzi E. Combust. Flame 132 (2003) 188-207
M. Furutani, M. Kono, M. Kojima, M. Nose, Y. Ohta, Chemical species histories up to ignition in premixed-compression-ignition natural-gas engine, in: The Fifth Int. Symp. on Diagnostics and Modeling of Combustion in Internal Combustion Engines, Comodia, 2001, p. 461
A. Babajimopoulos, G.A. Lavoie, D.A. Assanis, Modeling HCCI combustion with high levels of residual gas fraction-A comparison of two VVA strategies, SAE 2003-01-3220 (2003)
D. Law, D. Kemp, J. Allen, G. Kirkpatrick, T. Copland, Controlled combustion in an IC-engine with a fully variable valve train, SAE 2000-01-0251 (2001)
P. Risberg, D. Johansson, J. Andrae, G.T. Kalghatgi, P. Bjornbom, H.E. Engstrom, The influence of NO on the combustion phasing in an HCCI engine, SAE Technical Papers, 2006-01-0416 (2006)
D.L. Mitchell, J.A. Pinson, T.A. Litzinger, The effects of simulated EGR via intake air dilution on combustion in an optically accessible DI diesel engine, in: Fuels & Lubricants Meeting & Exhibition, SAE International, SAE-932798 (1993)
N. Ladommatos, S.M. Abdelhalim, H. Zhao, Z. Hu, The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions, Part 1: Effect of reducing inlet charge oxygen, in: Int. Spring Fuels and Lubricants Meeting, SAE International, SAE-961165 (1996)
N. Ladommatos, S.M. Abdelhalim, H. Zhao, Z. Hu, The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions, Part 2: Effects of carbon dioxide, in: Int. Spring Fuels and Lubricants Meeting, SAE International, SAE-961167 (1996)
N. Ladommatos, S.M. Abdelhalim, H. Zhao, Z. Hu, The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions, Part 3: Effects of water vapour, in: Int. Spring Fuels and Lubricants Meeting, SAE International, SAE-971659 (1997)
N. Ladommatos, S.M. Abdelhalim, H. Zhao, Z. Hu, The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions, Part 4: Effects of carbon dioxide and water vapour, in: Int. Spring Fuels and Lubricants Meeting, SAE International, SAE-971660 (1997)
Senthil Kumar M., Ramesh A., and Nagalingam B. Int. J. Hydrogen Energy 28 (2002) 1143-1154
Sung C.J., Huang Y., and Eng J.A. Combust. Flame 126 (2001) 1699-1713
Pinard P.F., Higgins A.J., and Lee J.H.S. Combust. Flame 136 (2003) 146-154
Machrafi H., and Cavadias S. Fuel Process. Technol. (2008) 10.1016/j.fuproc.2008.03.007
H. Machrafi, Ph.D. thesis, University of Paris 6 (UPMC), Paris, 2007
J. Chang, O. Güralp, Z. Filipi, D. Assanis, T.-W. Kuo, P. Najt, R. Rask, New heat transfer correlation for an HCCI engine derived from measurements of instantaneous heat flux, SAE 2004-01-2996 (2004)
Warnatz J. Proc. Combust. Inst. 24 (1992) 553-579
Curran H.J., Pitz W.J., Westbrook C.K., Callahan C.V., and Dryer F.L. Proc. Combust. Inst. 27 (1998) 379-387
Ciajolo A., and D'Anna A. Combust. Flame 112 (1998) 617-622
Minetti R., Carlier M., Ribaucour M., Therssen E., and Sochet L.R. Combust. Flame 102 (1995) 298-309
Ranzi E., Faravelli T., Gaffuri P., Sogaro A., D'Anna A., and Ciajolo A. Combust. Flame 108 (1997) 24-42
J.A. Eng Jr., W.R. Leppard, P.M. Najt, F. Dryer, The interaction between nitric oxide and hydrocarbon oxidation chemistry in a spark-ignition engine, in: Int. Fuels & Lubricants Meeting & Exposition, SAE 972889 (1997)
Miller J.A., and Bowman C.T. Prog. Energy Combust. Sci. 15 (1989) 287-338
Glarborg P., Johnsson J.E., and Dam-Johansen K. Combust. Flame 99 (1994) 523-532
Glarborg P., and Miller J.A. Combust. Flame 99 (1994) 475-483
Glarborg P., Kirstensen P.G., Jensen S.H., and Dam-Johansen K. Combust. Flame 98 (1994) 241-258
Glarborg P., Dam-Johansen K., Miller J.A., Kee R.J., and Coltrin M.E. Int. J. Chem. Kinet. 26 (1994) 421-436
Kilpinen P., Glarborg P., and Hupa M. Ind. Eng. Chem. Res. 31 (1992) 1477-1490
Y. Yamaya, M. Furutani, Y. Ohta, Int. Symp. on Diagnostics and Modeling of Combustion in Internal Combustion Engines, vol. 6, 2004, pp. 199-206
Salooja K.C. Combust. Flame 9 (1965) 373-382
Moore F., and Tipper C.F.H. Combust. Flame 19 (1972) 81-87
Yamada H., Suzaki K., Sakanashi H., Choi N., and Tezaki A. Combust. Flame 140 (2005) 24-33
Glassman I. Combustion. third ed. (1996), Academic Press, San Diego
W. Leppard, A comparison of olefin and paraffin autoignition chemistries: A motored-engine study, SAE-892081 (1989)
Ranzi E., Sogaro A., Gaffuri P., Pennati G., Westbrook C.K., and Pitz W.J. Combust. Flame 99 (1994) 201-211
Bowman C.T. Prog. Energy Combust. Sci. 1 (1975) 33-45
Heywood J.B. Fundamentals of Internal Combustion (1988), McGraw-Hill, New York p. 593
Frassoldati A., Faravelli T., and Ranzi E. Combust. Flame 135 (2003) 97-112