[en] The CARAIB (CARbon Assimilation In the Biosphere) model is used to study the vegetation distribution during the Late Miocene (Tortonian). In this version, the plant classification is specifically adapted to best represent Miocene European vegetation. Compared to other plant classifications used in global models, this adapted classification is more refined, since it is specifically developed for European vegetation and it includes various thermophylous tree types, which were present in Europe during the Miocene. The corresponding climatic tolerance parameters are based on the study of Laurent et al. (Journal of Vegetation Science, 15, 739-746, 2004) for the tree types currently present in Europe and on the distribution of analogue species in southeastern Asia and North/Central America for the thermophylous (sub-tropical) trees. The same classification is used to characterize the palaeoflora at the available Late Miocene localities, allowing a model-data comparison at the plant functional type level, rather than at the biome level. The climatic inputs to CARAIB are obtained from the COSMOS atmosphere-ocean general circulation model. The climatic anomalies (Tortonian minus Present) derived from COSMOS are interpolated to a higher spatial resolution before being used in the vegetation model. These anomalies are combined with a modern climatology to produce climatic fields with high spatial resolution (10' x 10'). This procedure has the advantage of making apparent relief features smaller than the grid cells of the climate model and, hence, makes easier the comparison with local vegetation data, although it does not really improve the quality of the Tortonian climate reconstruction. The new version of CARAIB was run over Europe at this higher spatial resolution. It calculates the potential distribution of 13 different classes of trees (including cold/cool/warm-temperate, subtropical and tropical types), together with their cover fractions, net primary productivities and biomasses. The resulting model vegetation distribution reconstructed for the Tortonian is compared to available palaeovegetation and pollen data. Before performing this comparison, the tree taxa present at the various data sites are assigned to one or several model classes, depending on the identification level of the taxa. If several classes are possible for a taxon, only those that can co-exist with the other tree classes identified at the site are retained. This methodology is similar to the co-existence approach used in palaeoclimatic reconstructions based on vegetation data. It narrows the range of tree types present at the various sites, by suppressing in the data the extreme types, such as the cold boreal/temperate and tropical trees. The method allows a comparison with the model simulation on a presence/absence basis. This comparison provides an overall agreement of 53% between the model and the data, when all sites and tree types are considered. The agreement is high (>85%) for needle-leaved summergreen boreal/temperate cold trees (Larix sp.) and for tropical trees, intermediate (>40%) for other boreal/temperate cold trees and for needle-leaved evergreen temperate cool trees, broadleaved summergreen temperate cool trees and broadleaved evergreen warm-temperate trees, and poor (<40%) for most temperate perhumid warm trees. In many cases, the model is shown to be better at predicting the absence than the presence, as observed for tropical trees. The modelled distributions of cold boreal/temperate trees tend to extend too much towards the south compared to the data. B contrast, model sub-tropical trees (temperate perhumid warm and needle-leaf summergreen temperate warm trees) appear to be restricted to some limited areas in southern Europe, while they are present in the data from central Europe up to at least 50 degrees N. Consequently, modelled Late Miocene climate appears to remain too cold to produce assemblages of trees consistent with the data. The predicted modelled trends from the past to the present are in the right direction, but the amplitude remains too small. For the simulations to be in a better agreement with the data, higher CO2 levels may be necessary in the climate simulations, or possibly other oceanic boundary conditions may be required, such as different bathymetry in the Panama seaway. (C) 2011 Elsevier B.V. All rights reserved.
Favre, E.; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Agusti J., Sanz de Siria A., Garces M. Explaining the end of the homonid experiment in Europe. Journal of Human Evolution 2003, 45:145-153.
Akkiraz M.S., Akgün F., Utescher T., Bruch A.A., Mosbrugger V., Wilde V. Precipitation gradients during the Miocene in western and central Turkey as quantified from pollen data. Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 304:276-290. (this volume).
Bachiri Taoufiq, N., 2000. Les environnements marins et continentaux du corridor rifain au Miocène supérieur d'après la palynologie. Thèse, Univ. Casablanca, Casablanca, 206 pp.
Ball J.T., Woodrow I.E., Berry J.A. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Progress in Photosynthesis Research 1987, Vol. 4:221-224. Martinus Nijhoff Publishers, Dordrecht-Boston-Lancaster.
Barron E. Estudio paleobotanico del afloramiento vallesiense (Neogeno) del torrente del vilella (La Cerdania, Lerida, Espagna). Aspectos tafonomicos y paleoecologicos. Boletin de la Real Sociedad Espanola de Historia Natural, Seccion Geologica 1999, 94:41-61.
Berger W. Die altpliozäne Flora der Congerien-Schichten von Brunn-Vösendorf bei Wien. Palaeontographica, Abt. B 1952, 92:79-121.
Berger W. Die Altpliozäne Flora des Laaerberges in Wien. Palaeontographica 1955, B97:81-113.
Bertini A. Palynological evidence of the upper Neogene environments in Italy. Acta Universitatis Carolinae, Geologica 2003, vol. 46, 4:15-25. Z. Kvaček (Ed.).
Bessais E., Cravatte J. Les écosystèmes végétaux pliocènes de Catalogne méridionale, Variations latitudinales dans le domaine nord-ouest méditerranéen. Geobios 1988, 21:49-63.
Bessedik M., 1985. Reconstitution des environnements miocènes des régions nord-ouest méditerranéennes à partir de la palynologie. Thèse, Univ. Montpellier 2, 161 pp.
Böhme M., Winklhofer M., Ilg A. Miocene precipitation in Europe: Temporal trends and spatial gradients. Paleogeography, Palaeoclimatology, Paleoecology 2011, 304:212-218. (this volume).
Bruch A.A., Utescher T., Alcalde Olivares C., Dolakova N., Mosbrugger V. Middle and Late Miocene spatial temperature patterns and gradients in Central Europe - preliminary results based on palaeobotanical climate reconstructions. Courier Forschungsinstitut Senckenberg 2004, 249:15-27.
Bruch A.A., Utescher T., Mosbrugger V., Gabrielyan I., Ivanov D.A. Late Miocene climate in the circum-Alpine realm - a quantitative analysis of terrestrial palaeofloras. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 238:270-280.
Bruch A., Uhl D., Mosbrugger V. Miocene climate in Europe - patterns and evolution: a first synthesis of NECLIME. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 253:1-7.
Bruch A.A., NECLIME members (www.neclime.de) Precipitation patterns in the Miocene of Central Europe and the development of continentality. Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 304:202-211. (this volume).
Chabot B.F., Jurik T.W., Chabot J.F. Influence of instantaneous and integrated light-flux density on leaf anatomy and photosynthesis. American Journal of Botany 1979, 66:940-945.
Chryssanthi I., Solouniasd N. A radiometrically dated pollen flora from the Upper Miocene of Samons Island, Greece. Revue de Micropaleontologie 1985, 28:197-204.
Collatz G.J., Ribas-Carbo M., Berry J.A. A coupled photosynthesis - stomatal conductance model for leaves of C4 plants. Australian Journal of Plant Physiology 1992, 19:519-538.
Darby D.A. Arctic perennial ice cover over the last 14million years. Paleoceanography 2008, 23. PA1S07. 10.1029/2007PA001479.
Demicco R.V., Lowenstein T.K., Hardie L.A. Atmospheric pCO2 since 60Ma from records of seawater pH, calcium, and primary carbonate mineralogy. Geology 2003, 31:793-796. 10.1130/G19727.1.
Eder-Kovar J. Obermiozäne Floren aus der Molassezone Österreichs. Beiträge zur Paläontologie von Österreich 1988, 14:19-121.
Eder-Kovar J., Krainer B. Faziesentwicklung und Florenabfolge des Aufschlusses Wörth bei Kirchberg/Raab (Pannon, Steirisches Becken). Annalen des Naturhistorischen Museums in Wien, Serie 1991, A:7-38.
Eder-Kovar J., Kvaček Z. Towards vegetation mapping based on the fossil plant record. Acta Universitatis Carolinae, Geologica 2003, 46:7-13. Z. Kvaček (Ed.).
Eder-Kovar J., Hably L., Derek T. Neuhaus-Klausenbach - eine miozäne (pannone) Pflanzenfundstelle aus dem südlichen Burgenland. Jahrbuch der Geologischen Bundesanstalt 1995, 138(2):321-347.
Eder-Kovar J., Kvaček Z., Zastawniak E., Givulescu R., Hably L., Mihajlović D., Teslenko J., Walther H. Floristic trends in the vegetation of the Paratethys surrounding areas during Neogene time. The Evolution of Western Eurasian Neogene Mammal Faunas 1996, 395-413. Columbia University Press. R.L. Bernor, V. Fahlbusch, H.-W. Mittmann (Eds.).
Eder-Kovar J., Jechorek H., Kvaček Z., Parashiv V. The integrated plant record: an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios 2008, 23:97-111.
Erdei B., Hably L., Kázmér M., Utescher T., Bruch A.A. Neogene vegetation development and dynamics in the Pannonian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 253:113-138.
Eronen J.T., Mirzaie M., Karme A., Micheels A., Bernor R.L., Fortelius M. Distribution history and climatic controls of the Late Miocene Pikermian chronofauna. Proceedings of the National Academy of Sciences of the United States of America 2009, 106(29):11867-11871.
Farjanel G., 1985. La flore et le climat du Néogène et du Pléistocène de Bresse (France) d'après l'analyse pollinique. Implications Chronostratigraphiques. Thèse, Univ. Dijon, 195 pp.
Farquhar G.D., von Caemmerer S., Berry J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149:78-90.
Fauquette S., Suc J.-P., Jiménez-Moreno G., Micheels A., Jost A., Favre E., Bachiri-Taoufiq N., Bertini A., Clet-Pellerin M., Diniz F., Farjanel G., Feddi N., Zheng Z. Latitudinal climatic gradients in Western European and Mediterranean regions from the Mid-Miocene (c. 15Ma) to the Mid-Pliocene (c. 3.5Ma) as quantified from pollen data. The Micropaleontological Society, The Geological Society, London, Special Publications 2007, 481-502. M. Williams, A. Haywood, J. Gregory, D.N. Schmidt (Eds.).
François L.M., Delire C., Warnant P., Munhoven G. Modelling the glacial-interglacial changes in the continental biosphere. Global and Planetary Change 1998, 16-17:37-52.
François L.M., Goddéris Y., Warnant P., Ramstein G., de Noblet N., Lorenz S. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chemical Geology 1999, 159:163-189.
François L., Ghislain M., Otto D., Micheels A. Late Miocene vegetation reconstruction with the CARAIB model. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 238:302-320.
Galy V., François L., France-Lanord C., Faure P., Kudrass H., Palhol F., Singh S.K. C4 plants decline in the Himalayan basin since the Last Glacial Maximum. Quaternary Science Reviews 2008, 27:1396-1409.
Gérard J.-C., Nemry B., Francois L., Warnant P. The interannual change of atmospheric CO2: contribution of subtropical ecosystems?. Geophysical Research Letters 1999, 26:243-246.
Givulescu R. Die fossile Flora von Valea Neagra, Bez. Crisana, Rumänien. Palaeontographica, Abteilung B 1962, 110:128-187.
Givulescu R. Fossile Pflanzen aus dem Pannon von Delureni (Rumänien). Palaeontographica, Abteilung B 1975, 153:150-182.
Givulescu R. Quelques considérations sur la flore fossile du bassin d'Oas, departement de Satu Mare. The Miocene from the Transylvanian Basin, Romania 1994, 29-34. Universitea Babes-Bolaai, Cluj-Napoca.
Gladstone G., Flecker R., Valdes P., Lunt D., Markwick P. The Mediterranean hydrologic budget from a Late Miocene global climate simulation. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 251:254-267.
Goudriaan J., van Laar H.H. Modelling Potential Crop Growth Processes Textbook with Exercises 1994, Kluwer Academic Publishers, Dordrecht, 238 pp.
Henrot, A.-J., François, L., Favre, E., Butzin, M., Ouberdous, M., Munhoven, G., 2010. Effects of CO2, continental distribution, topography and vegetation changes on the climate at the Middle Miocene: a model study. Climate of the Past 6, 675-694.
Horváth E. Beiträge zur Kenntnis der pliozänen Flora Westungarns, Savaria. Vas megyei Múzeumok Értesítoje 1972, 5-6:23-73.
Hubert B., François L., Warnant P., Strivay D. Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. Journal of Hydrology 1998, 212-213:318-334.
Ivanov D.A., Ashraf A.R., Mosbrugger V., Palmarev E. Palynological evidence for Miocene climate change in the Forecarpathian Basin (Central Paratethys, NW Bulgaria). Palaeogeography, Palaeoclimatology, Palaeoecology 2002, 178:19-37.
Ivanov D., Utescher T., Mosbrugger V., Syabryaj S., Dordjevic-Milutinovic D., Molchanoff S. Miocene vegetation and climate dynamics in Eastern and Central Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 304:262-275. (this volume).
Jiménez-Moreno G., 2005. Utilización del análisis polínico para la reconstrución de la vegetación, clima y estimación de paleoaltitudes a lo largo de arco alpino europeo durante el Mioceno (21-8Ma). Thèse, Univ. Lyon 1 et Univ. Grenade, 312 pp.
Jungclaus J.H., Keenlyside N., Botzet M., Haak H., Luo J.-J., Latif M., Marotzke J., Mikolajewicz U., Roeckner E. Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. Journal of Climate - Special Section 2006, 19:3952-3972.
Knobloch E. Die gegenseitigen Beziehungen der tschechoslowakischen und ungarischen Tertiärfloren. Földt. Közl. Bulletin of the Hungarian Geological Society 1973, 102(3-4):246-269.
Knobloch E. Die Flora aus dem Pannon von Neusiedl/See (Burgenland, Österreich). Paleont. Conf. 1977, Praha. Carlowa Univ 1978, 157-168.
Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift 2006, 15:259-263.
Kretzoi M., Krolopp E., Lörincz H., Pálfalvy I. Flora, Fauna und Stratigraphische Lage der Untenpannonischen Prähominiden-Fundstelle von Rudabánya, NO-Ungarn. Annual Report of the Hungarian Geological Institute 1976, 1974:365-394.
Lászlo J. Fossil plant remains from the lignite open mining at Bukkábrány. Annual Report of the Hungarian Geological Institute Budapest 1992, 1990:321-337.
Laurent J.-M., Bar-Hen A., François L., Ghislain M., Cheddadi R. Refining vegetation simulation models: from plant functional types to bioclimatic affinity groups of plants. Journal of Vegetation Science 2004, 15:739-746.
Laurent J.-M., François L., Bar-Hen A., Bel L., Cheddadi R. European Bioclimatic Affinity Groups: data-model comparisons. Global and Planetary Change 2008, 61:28-40.
Magyar I., Geary D.H., Müller P. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 1999, 147:151-167.
Mai D.H. Tertiäre Vegetationsgeschichte Europas 1995, Gustav Fischer, Jena, Stuttgart, New York.
Mai D.H. Die mittelmiozaenen und obermiozaenen Floren aus der Meuroer und Raunoer Folge in der Lausitz; Teil 2, Dicotyledonen. Palaeontographica, Abteilung B 2001, 257:35-174.
Manukyan L.K. The Miocene flora and vegetation of the Hoktemberyan depression on palaeopalynological data [in Russian]. Akademia Nauk Armianskoy SSR. Biologicheski Zhurnal Armenii 1977, 30(12):9-15.
Marsland S.J., Haak H., Jungclaus J.H., Latif M., Röske F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 2003, 5:91-127.
Melinte-Dobrinescu M.C., Suc J.-P., Clauzon G., Popescu S.-M., Armijo R., Meyer B., Biltekin D., Çaǧatay M.N., Ucarkus G., Jouannic G., Fauquette S., Çakir Z. The Messinian salinity crisis in the Dardanelles region: Chronostratigraphic constraints. Palaeogeography, Palaeoclimatology, Palaeoecology 2009, 278:24-39.
Menke B. Vegetationsgeschichte und Florenstratigraphie Nordwestdeutschlands im Pliozän and Frühquartär. Mit einem Breitag zur Biostratigraphie des Weichselfrühglazials. Geologisches Jahrbuch 1975, A26:1-151.
Meziane D., Shipley B. Direct and indirect relationships between specific leaf area, leaf nitrogen and leaf gas exchange. Effects of irradiance and nutrient supply. Annals of Botany 2001, 88:915-927.
Micheels A., Bruch A.A., Uhl D., Utescher T., Mosbrugger V. A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 253:267-286.
Micheels A., Bruch A.A., Mosbrugger V. Miocene climate modelling sensitivity experiments for different CO2 concentrations. Palaeontologia Electronica 2009, 12(6A). 20 pp.
Micheels A., Bruch A.A., Eronen J., Fortelius M., Harzhauser M., Utescher T., Mosbrugger V. Analysis of heat transport mechanisms from a Late Miocene model experiment with a fully-coupled atmosphere-ocean general circulation model. Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 304:337-350. (this volume).
Mintz Y., Walker G.K. Global fields of soil moisture and land surface evapotranspiration derived from observed precipitation and surface air temperature. Journal of Applied Meteorology 1993, 32:1305-1334.
Mosbrugger V., Utescher T. The coexistence approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 1997, 134:61-86.
Mosbrugger V., Utescher T., Dilcher D.L. Cenozoic continental climatic evolution of Central Europe. Proceedings of the National Academy of Sciences of the United States of America 2005, 102:14964-14969.
Naud G., Suc J.-P. Contribution à l'étude paléofloristique des Coirons (Ardèche): premières analyses polliniques dans les alluvions sous-basaltiques et interbasaltiques de Mirabel (Miocène supérieur). Bulletin de la Société Géologique de France, Sér. 1975, 7(17, 5):820-827.
Nemry B., François L., Warnant P., Robinet F., Gérard J.-C. The seasonality of the CO2 exchange between the atmosphere and the land biosphere: a study with a global mechanistic vegetation model. Journal of Geophysiqcal Research 1996, 101:7111-7125.
New M., Lister D., Hulme M., Makin I. A high-resolution data set of surface climate over global land areas. Climate Research 2002, 21:1-25.
Otto D., Rasse D., Kaplan J., Warnant P., François L. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: comparison between general circulation models using prescribed and computed sea surface temperatures. Global and Planetary Change 2002, 33:117-138.
Pagani M., Zachos J.C., Freeman K.H., Tipple B., Bohaty S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 2005, 309:600-603.
Pais J. Evolution de la végétation et du climat pendant le Miocène au Portugal. Ciencias da Terra 1986, 8:179-189.
Palfalvy I. Plantes fossils du Pliocéne inférieur des environs de Rozsaszentmárton. Annual Report of the Hungarian Geological Institute Budapest 1952, 1949:63-66.
Pálfalvy I. Pliozäne Pflanzenreste von Balatonszentgyörgy, SW-Ungarn. Annual Report of the Hungarian Geological Institute Budapest 1977, 1975:417-422.
Palfalvy I., Rakosi L. Die Pflanzenreste des lignitflözführenden Komplexes von Visonta (N-Ungarn). Ann. Report Hungarian Geol. Inst. Budapest 1979, 1977:47-66.
Pantić N., Mihajlović D. Neogene florae of "Balkan land" and their significance for paleoclimatology, paleobiogeography and biostratigraphy III. Annales Géologiques de la Péninsule Balkanique 1980, 43-44:239-261.
Popescu S.-M., Dalesme F., Jouannic G., Escarguel G., Head M.J., Melinte-Dobrinescu M.C., Süto-Szentai M., Bakrac K., Clauzon G., Suc J.-P. Galeacysta etrusca complex, dinoflagellate cyst marker of Paratethyan influxes into the Mediterranean Sea before and after the peak of the Messinian Salinity Crisis. Palynology 2009, 33(2):105-134.
Lithological-paleogeographic maps of Paratethys. 10 maps Late Eocene to Pliocene. Courier Forschunginstitut Senckenberg 2004, 250:1-46. S.V. Popov, F. Rögl, A.Y. Rozanov, F.F. Steininger, I.G. Shcherba, M. Kovac (Eds.).
Popov S.V., Shcherba I.G., Ilyina L.B., Nevesskaya L.A., Paramonova N.P., Khondkarian S.O., Magyar I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 238(1-4):91-106.
Rivas Carballo M.R. Análisis palinológico del tramo superior de la sección de Torremormojón (Palencia). Actas de Palinología. VI Simposio de Palinología (A.P.L.E.), Salamanca, 1986 1986, 338-344. Ediciones de la Universidad de Salamanca. J. Civis Llovera, M. Valle Hernández (Eds.).
Rivas Carballo M.R., Valle Hernández M.F. Palinologia de la cuenca del Duero Peñafiel (Valladolid). Actas de Palinologia (Actas del VI Simposio de Palinologia, A.P.L.E.) 1987, 345-350. Universidad de Salamanca, Salamanca. J. Civis Llovera, M.F. Valle Hernández (Eds.).
Rivas-Carballo M.R. The development of vegetation and climate during the Miocene in the south-eastern sector of the Duero Basin (Spain). Review of Palaeobotany and Palynology 1991, 67:341-351.
Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A. The atmospheric general circulation model ECHAM5 Part 1 - model description. Report 2003, 349. Max-Planck-Institut für Meteorologie, Hamburg.
Roeckner E., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kornblueh L., Manzini E., Schlese U., Schulzweida U. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. Journal of Climate 2006, 19:3771-3791.
Sanz de Siria A. Datos para el conocimiento de las floras miocenicas de Cataluna. Paleontologia i Evolució 1985, 19:167-177.
Saxton K.E., Rawls W.J., Romberger J.S., Papendick R.I. Estimating generalized soil-water characteristics from texture. Soil Science Society of America Journal 1986, 50(4):1031-1036.
Simioni G., Gignoux J., Le Roux X., Appé R., Benest D. Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occuring savanna tree species. Tree Physiology 2004, 24:205-216.
Steppuhn A., Micheels A., Geiger G., Mosbrugger V. Reconstructing the Late Miocene climate and oceanic heat flux using the AGCM ECHAM4 coupled to a mixed-layer ocean model with adjusted flux correction. Palaeogeography, Palaeoclimatology, Palaeoecology 2006, 238:399-423.
Steppuhn A., Micheels A., Bruch A.A., Uhl D., Utescher T., Mosbrugger V. The sensitivity of ECHAM4/ML to a double CO2 scenario for the Late Miocene and the comparison to terrestrial proxy data. Global and Planetary Change 2007, 57:189-212.
Suc J.-P., Legigan P., Diniz F. Analyse pollinique de lignites néogènes des Landes: Arjuzanx et Hostens (France). Bulletin de l'Institut de Géologie du Bassin d'Aquitaine 1986, 40:53-65.
Syabryaj S., Utescher T., Molchanov S. Changes of climate and vegetation during the Miocene in the territory of Ukraine. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 253:151-166.
Utescher T., Mosbrugger V. The Palaeoflora database http://www.palaeoflora.de.
Utescher T., Mosbrugger V., Ashraf A.R. Terrestrial climate evolution in Northwest Germany over the last 25million years. Palaios 2000, 15:430-449.
Utescher T., Erdei B., François L., Mosbrugger V. Tree diversity in the Miocene forests of Western Eurasia. Palaeogeography, Palaeoclimatology, Palaeoecology 2007, 253:226-250.
Utescher T., Djordjević-Milutinović D., Bruch B., Mosbrugger V. Climate and vegetation changes in Serbia during the last 30Ma., Palaeogeography, Palaeoclimatology. Palaeoecology 2007, 253:139-150.
Utescher T., Mosbrugger V., Ivanov D., Dilcher D.L. Present-day climatic equivalents of European Cenozoic climates. Earth and Planetary Science Letters 2009, 284:544-552.
Utescher T., Bruch A.A., Micheels A., Mosbrugger V., Popova S. Cenozoic climate gradients in Eurasia - a palaeo-perspective on future climate change?. Palaeogeography, Palaeoclimatology, Palaeoecology 2011, 304:351-358. (this volume).
Valle Hernández M.F., Salvador de Luna J.V. Resultados palinológicos en el borde sur-occidental de la cuenca del Duero. Estudios Geológicos 1985, 41(1-2):69-76.
Valle Hernández M.F., Salvador de Luna J.V. Palinología del Neógeno de la cuenca del Duero. Castrillo del Val (Burgos). Estudios Geológicos 1985, 41(3-4):237-242.
Van der Burgh J. Some local floras from the Neogene of the Lower Rhenish Basin. Journal of Tertiary Research 1988, 9:181-212.
Van Wijk M.T., Dekker S.C., Bouten W., Bosveld F.C., Kohsiek W., Kramer K., Mohren G.M.J. Modeling daily gas exchange of a Douglas-fir forest: comparison of three stomatal conductance models with and without a soil water stress function. Tree Physiology 2000, 20:115-122.
Warnant P. Modélisation du cycle du carbone dans la biosphère continentale à l'échelle globale 1999, Université de Liège, 276 pp.
Warnant P., François L., Strivay D., Gérard J.C. CARAIB: A global model of terrestrial biological productivity. Global Biogeochemical Cycles 1994, 8(3):255-270.
Wolfe J.A. Temperature parameters of humid to mesic forests of Eastern Asia. Geological Survey Professional Papers 1979, 1106. 37 pp.
Zachos J.C., Pegani M., Stone L., Thomas E., Billups K. Trends, rhythms, andaberrations in global climates 65Ma to present. Science 2001, 292:293-686.