Article (Scientific journals)
Power systems stability control: Reinforcement learning framework
Ernst, Damien; Glavic, Mevludin; Wehenkel, Louis
2004In IEEE Transactions on Power Systems, 19 (1), p. 427-435
Peer Reviewed verified by ORBi
 

Files


Full Text
IEEEtrans-2003.pdf
Publisher postprint (208.57 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
agent; optimal control; power system control; power system oscillations; reinforcement learning; transient stability
Abstract :
[en] In this paper, we explore how a computational approach to learning from interactions, called reinforcement learning (RL), can be applied to control power systems. We describe some challenges in power system control and discuss how some of those challenges could be met by using these RL methods. The difficulties associated with their application to control power systems are described and discussed as well as strategies that can be adopted to overcome them. Two reinforcement learning modes are considered: the online mode in which the interaction occurs with the real power system and the offline mode in which the interaction occurs with a simulation model of the real power system. We present two case studies made on a four-machine power system model. The first one concerns the design by means of RL algorithms used in offline mode of a dynamic brake controller. The second concerns RL methods used in online mode when applied to control a thyristor controlled series capacitor (TCSC) aimed to damp power system oscillations.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Glavic, Mevludin ;  Université de Liège - ULiège > Département d'Electricité, d'Electronique, et d'Informatique > Systèmes et Modélisation
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Power systems stability control: Reinforcement learning framework
Publication date :
February 2004
Journal title :
IEEE Transactions on Power Systems
ISSN :
0885-8950
Publisher :
Ieee-Inst Electrical Electronics Engineers Inc, Piscataway, United States - New Jersey
Volume :
19
Issue :
1
Pages :
427-435
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 22 March 2009

Statistics


Number of views
128 (12 by ULiège)
Number of downloads
1588 (22 by ULiège)

Scopus citations®
 
186
Scopus citations®
without self-citations
175
OpenCitations
 
115
OpenAlex citations
 
196

Bibliography


Similar publications



Contact ORBi