[en] Silicon-based substrates for the epitaxy of HgCdTe are an attractive low-cost choice for monolithic integration of infrared detectors with mature Si technology and high yield. However, progress in heteroepitaxy of CdTe/Si (for subsequent growth of HgCdTe) is limited by the high lattice and thermal mismatch, which creates strain at the heterointerface that results in a high density of dislocations. Previously we have reported on theoretical modeling of strain partitioning between CdTe and Si on nanopatterned silicon on insulator (SOI) substrates. In this paper, we present an experimental study of CdTe epitaxy on nanopatterned (SOI). SOI (100) substrates were patterned with interferometric lithography and reactive ion etching to form a two-dimensional array of silicon pillars with similar to 250 nm diameter and 1 mu m pitch. MBE was used to grow CdTe selectively on the silicon nanopillars. Selective growth of CdTe was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Coalescence of CdTe on the silicon nanoislands has been observed from the SEM characterization. Selective growth was achieved with a two-step growth process involving desorption of the nucleation layer followed by regrowth of CdTe at a rate of 0.2 angstrom s(-1). Strain measurements by Raman spectroscopy show a comparable Raman shift (2.7 +/- 2 cm(-1) from the bulk value of 170 cm(-1)) in CdTe grown on nanopatterned SOI and planar silicon (Raman shift of 4.4 +/- 2 cm(-1)), indicating similar strain on the nanopatterned substrates.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.