Statsoft Inc. (1997) Statistica for Windows, Computer program manual, Tulsa.
AQUASIM. Computer Program for the identification and Simulation of Aquatic Systems (1998) Version 2. 1 (win/mfc). Peter Reichert, Jürg Ruchti and Werner Simon.
Baâti L (2000) Incidence de l'itinéraire technologique sur la valeur d'usage de Lactobacillus acidophilus: Recherches de marqueurs physiologiques. Ph. D. thesis, Institut National des Sciences Appliqueés, Toulouse, France.
Barba D, Beochini F, Del Re G, Di Giacomo G, Veglio F (2001) Kinetic analysis of Kluyveromyces lactis fermentation on whey batch and fed-batch operations. Process Biochem 36: 531-536.
Ben Amor K, Cornelius C, Mahjoub A, Ph Thonart (1998) Identification de la flore lactique du Lben et évaluation des composés aromatisants. Microbiol Hyg Alim 10: 31-36.
Boonmee M, Leksawasdi N, Bridge W, Rogers PL (2003) Batch and continuous culture of Lactococcus lactis NZ133: experimental data and model development. Biochem Eng J 14: 127-135.
Burgos-Rubio CN, Okos MR, Wankat PC (2000) Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol Progress 16(3): 305-314.
Canales A (1991) Croissance Crytique en bioréacteur à membrane: application au traitement des eaux résiduaires urbaines. Ph. D. thesis, Institut National des Sciences Appliqueés, Toulouse, France.
Carrigues C, Mercade M, Loubière P, Lindley ND, Cocaign-Bousquet M (1998) Comportement métabolique de Lactococcus lactis en réponse à l'environnement. Lait 78: 145-155.
Gadgil CJ, Venkatesh KV (1997) Structured model for batch culture growth of Lactobacillus bulgaricus. J Chem Technol Biotechnol 68(1): 89-93.
Gänzle MG, Vermeulen N, Vogel FR (2007) Carbohydrate, peptide and lipid metabolism of lactic acid bacteria in sourdough. Food Microbiol 24: 28-138.
Gaudreau H, Champagne CP, Goulet J, Conway J (1997) Lactic Fermentation of Media Containing High Concentrations of Yeast Extracts. J Food Sci 62: 1072-1075.
Ghaly AE, Kamal M, Correia LR (2005) Kinetic modelling of continuous submerged fermentation of cheese whey for single cell protein production. Biores Technol 96: 1143-1152.
Gonzalez Siso MI (1996) The biotechnological utilization of cheese whey: a review. Biores Technol. 57: 1-11.
Hsieh CM, Yang FC, Iannotti EI (1999) The effect of soy protein hydrolyzates on fermentation by Lactobacillus amylovorus. Process Biochem 34: 173-179.
Imam SH, Harry-O'kuru R (1991) Adhesion of Lactobacillus amylovorus to insoluble and derivatized cornstarch granules. Appl Environ Microbiol 57: 1128-1133.
Juillard V, Guillot A, Le Bars D, Gripon JC (1998) Specificity of peptide milk utilisation by Lactococcus lactis. AEM 64: 1230-1236.
Kaminogawa S, Yan TR, Azuma N, Yamauchi K (1986) Identification of low molecular weight peptides in Gouda-type cheese and evidence for the formation of these peptides from 23 N-terminal residues of αS1-casein by proteinases of Streptococcus cremoris H61. Food Sci 51: 1253-1256.
Kovarova-Kovar K, Egli T (1998) Growth kinetics of suspended microbial cells: from single-substrate-controlled growth to mixed substrate kinetics. Microbio Mol Bio Reviews 62: 646-666.
Kunji ERS, Mierau I, Poolman B, Konings WN, Venema G, Kok J (1996) Fate of peptides in peptidase mutants of Lactococcus lactis. Mol Microbiol 21: 123-131.
Lamarque M, Charbonnel P, Aubel D, Piard JC, Atlan D, Juillard V (2004) A multifunction ABC transporter (Opt) contributes to diversity of peptide uptake specificity within the genus Lactococcus. J Bac 186: 6492-6500.
Lejeune R, Callewaert R, Crabbé K, De Vuyst L (1998) Modelling the growth and bacteriocin production by Lactobacillus amylovorus DCE 471 in batch cultivation. JAM 84: 159-168.
Leroy F, De Vuyst L (2001) Growth of the bacteriocin-producing Lactobacillus sakei strain CTC 494 in MRS broth is strongly reduced due to nutrient exhaustion: a nutrient depletion model for the growth of lactic acid bacteria. Appl Environ Microbiol 67: 4407-4413.
Levau Y (1992) Les groupes microbiens d'intérêt laitiers. Lavoisier, Paris.
Liu C, Liu Y, Liao W, Wen Z, Chen S (2003) application of statistically-based experimental designs for the optimization of nisin production from whey. Biotechnol Lett 25: 877-882.
McKellar RC, Lu X (2003) Development of a global stochastic model describing the relationship between the distribution of individual cell physiological states and population physiological state. In: van Impe JFM, Geeraerd AH, Leguérinel I, Mafart P (eds) Predictive modelling in foods. conference proceedings. Leuven, Belgium, pp 197-199.
Monteagudo JM, Rodriguez L, Rincon J, Fuertes J (1997) Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. J Chem Technol Biotechnol 68(3): 271-276.
Morabito D (1994) Production d'acide lactique par Lactobacillus casei sur lactosérum: études cinétiques, modélisation et simulation de procédé intégré. Ph. D. thesis, Institut National Polytechnique, Lorraine, France.
Nandasana AD, Kumar S (2008) Kinetic modelling of lactic acid production from molasses using Enterococcus faecalis RKY1. Biochem Eng J 38: 277-284.
Nelder JA, Mead R (1965) A simplex method for function minimization. The Computer Journal 7: 308-313.
Neysens P, De Vuyst L (2005) Carbon dioxide stimulates the production of amylovorin L by Lactobacillus amylovorus DCE 471, while enhanced aeration causes biphasic kinetics of growth and bacteriocin production. Int J Food Microbiol 105(2): 191-202.
Olmos-Dichara A, Ampe F, Uribelarrea JL, Pareilleux A, Goma G (1997) Growth and lactic acid production by Lactobacillus casei ssp. rhamnosus in batch and membrane bioreactor: influence of yeast extract and tryptone enrichment. Biotechnol Lett 19: 709-714.
Pauli T, Fitzpatrick JJ (2002) Malt combing nuts as nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus casei. Process Biochem 38: 1-6.
Pescuma M, Hébert EM, Mozzi F, Font de Valdez G (2008) Whey fermentation by thermophilic lactic acid bacteria: Evolution of carbohydrates and protrein content. Food Microbial 25: 442-451.
Picon A, Garcia-Casado MA, Nunez M (2009) Proteolytic activities, peptide utilization and oligopeptide transport systems of wild Lactococcus lactis strains. Int Dairy J doi: 10. 1016/j. idairyj. 2009. 10. 002.
Ruggeri P (1988) Ethanol production from lactose by Kluyveromyces fragilis: kinetic study of an immobilized yeast reactor. Chem Eng J 37: 23-30.
Thiele C, Grassl S, Gänzle MG (2004) Gluten hydrolysis and depolymerisation during sourdough fermentation. J Agri Food Chem 52: 1307-1314.
Vasquez JA, Gonzalez MP, Murado MA (2003) Substrate inhibition of Pediococcusacidilactici by glucose on a waste medium. Simulations and experimental results. Lett Appl Microbiol 37: 365-369.
Wenge F, Mathews AP (1999) Lactic acid production from lactose by Lactobacillus plantarum: kinetic model and effects of pH, substrate, and oxygen. Biochem Eng J 3: 163-170.
Ziadi M, Touhami Y, Achour M, Thonart P, Hamdi M (2005) The effect of heat stress on freeze-drying and conservation of Lactococcus. Biochem Eng J 24: 141-145.
Ziadi M, Wathelet JP, Marlier M, Hamdi M, Thonart P (2008) Analysis of volatile compounds produced by two strains of Lactococcus lactis isolated from Leben (Tunisian fermented milk) using solid-phase microextraction-gas chromatography. J Food Sci 73: 247-252.
Ziadi M, Bergot G, Courtin P, Chambellon E, Hamdi M, Yvon M (2010) Amino acid Catabolism by Lactococcus lactis during milk fermentation. Int Dairy J 20: 25-31.