F. Boniver, S. Hansoul, P. Mathonet, and N. Poncin. Equivariant symbol calculus for differential operators acting on forms. Lett. Math. Phys., 62(3):219-232, 2002.
F. Boniver and P. B. A. Lecomte. A remark about the Lie algebra of infinites-imal conformal transformations of the Euclidean space. Bull. London Math. Soc., 32(3):263-266, 2000.
F. Boniver and P. Mathonet. Maximal subalgebras of vector fields for equivariant quantizations. J. Math. Phys., 42(2):582-589, 2001.
F. Boniver and P. Mathonet. Ifft-equivariant quantizations. J. Geom. Phys., 56:712-730, 2006.
M. Bordemann. Sur l'existence d'une prescription d'ordre naturelle projectivement invariante. Submitted for publication, math.DG/0208171.
Sofiane Bouarroudj. Formula for the projectively invariant quantization on degree three. C. R. Acad. Sci. Paris Sér. I Math., 333(4):343-346, 2001.
A. Čap, J. Slovák, and V. Souček. Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation. Acta Math. Univ. Comenian. (N.S.), 66(1):33-69, 1997.
A. Čap, J. Slovák, and V. Souček. Invariant operators on manifolds with almost Hermitian symmetric structures. II. Normal Cartan connections. Acta Math. Univ. Comenian. (N.S.), 66(2):203-220, 1997.
Elie Cartan. Sur les variétés & connexion projective. Bull. Soc. math. France, 52:205-241, 1924.
C. Duval, P. Lecomte, and V. Ovsienko. Conformally equivariant quantization: existence and uniqueness. Ann. Inst. Fourier (Grenoble), 49(6):1999-2029, 1999.
C. Duval and V. Ovsienko. Projectively equivariant quantization and symbol calculus: noncommutative hypergeometric functions. Lett. Math. Phys., 57(1):61-67, 2001.
Sarah Hansoul. Existence of natural and projectively equivariant quantizations. Submitted for publication, math.DG/0601518.
Sarah Hansoul. Projectively equivariant quantization for differential operators acting on forms. Lett. Math. Phys., 70(2):141-153, 2004.
James Hebda and Craig Roberts. Examples of Thomas-Whitehead projective connections. Differential Geom. Appl., 8(1):87-104, 1998.
Shoshichi Kobayashi. Transformation groups in differential geometry. Springer-Verlag, New York, 1972. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 70.
Shoshichi Kobayashi and Tadashi Nagano. On filtered Lie algebras and geometric structures. I. J. Math. Mech., 13:875-907, 1964.
Shoshichi Kobayashi and Tadashi Nagano. On projective connections. J. Math. Mech., 13:215-235, 1964.
Shoshichi Kobayashi and Tadashi Nagano. On filtered Lie algebras and geometric structures. III. J. Math. Mech., 14:679-706, 1965.
P. B. A. Lecomte. On the cohomology of sl(m + 1, ℝ) acting on differential operators and sl(m + 1, ℝ)-equivariant symbol. Indag. Math. (N.S.), 11(1):95-114, 2000.
P. B. A. Lecomte and V. Yu. Ovsienko. Projectively equivariant symbol calculus. Lett. Math. Phys., 49(3):173-196, 1999.
Pierre B. A. Lecomte. Classification projective des espaces d'opérateurs différentiels agissant sur les densités. C. R. Acad. Sci. Paris Sér. I Math., 328(4):287-290, 1999.
Pierre B. A. Lecomte. Towards projectively equivariant quantization. Progr. Theoret. Phys. Suppl., (144):125-132, 2001. Noncommutative geometry and string theory (Yokohama, 2001).
P. Mathonet and F. Radoux. Natural and projectively equivariant quantizations by means of Cartan connections. Lett. Math. Phys., 72(3):183-196, 2005.
Craig Roberts. The projective connections of T. Y. Thomas and J. H. C. Whitehead applied to invariant connections. Differential Geom. Appl., 5(3):237-255, 1995.
Craig Roberts. Relating Thomas-Whitehead projective connections by a gauge transformation. Math. Phys. Anal. Geom., 7(1):1-8, 2004.
Tracy Yerkes Thomas. A projective theory of affinely connected manifolds. Math. Z., 25:723-733, 1926.
Oswald Veblen and Tracy Yerkes Thomas. The geometry of paths. Trans. Amer. Math. Soc., 25(4):551-608, 1923.
H. Weyl. Zur Infinitesimalgeometrie; Einordnung der projektiven und der konformen Auffassung. Göttingen Nachr., pages 99-122, 1921.
J. H. C. Whitehead. The representation of projective spaces. Ann. of Math. (2), 32(2):327-360, 1931.
N. M. J. Woodhouse. Geometric quantization. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, second edition, 1992. Oxford Science Publications.