[en] This paper deals with a time-domain homogeniza- tion method for laminated cores and its application to the 2D finite element simulation of rotating electrical machines. The number of additional degrees of freedom of the model, for considering the variation of the flux density along the lamination thickness, can be tuned so as to reach a good compromise between accuracy and computation time. The results obtained for a switched reluctance motor agree very well with those produced by a precise full 3D model in which eddy currents are explicitly modeled.
Disciplines :
Electrical & electronics engineering
Author, co-author :
Gyselinck, Johan; Université Libre de Bruxelles - ULB > BEAMS
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
V Sabariego, Ruth ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Considering Laminated Cores and Eddy Currents in 2D and 3D Finite Element Simulation of Electrical Machines
Publication date :
2011
Event name :
18th Conference on the Computation of Electromagnetic Fields (COMPUMAG2011)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.