Poster (Scientific congresses and symposiums)
Non Stationary Multiresolution Analysis
Simons, Laurent
2010PhD-Day
 

Files


Full Text
phdday_poster_Simons_NSMRA.pdf
Author postprint (241.94 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Wavelets; Multiresolution analysis
Abstract :
[en] An orthonormal basis of wavelets of $L^2(\R)$ is an orthonormal basis of $L^2(\R)$ of type \[ \psi_{j,k}=2^{j/2}\psi(2^j\cdot-k),\quad j,k\in\Z. \] A classical method to obtain such bases consists in constructing a multiresolution analysis. When the mother wavelet $\psi$ depends on the scale (i.e. the index $j$), a non stationary version of multiresolution analysis is then used. It is for example the case in the general context of Sobolev spaces. We generalize different characterizations in the standard theory of wavelets to the case of multi-scales wavelets and non stationary multiresolution analyses.
Disciplines :
Mathematics
Author, co-author :
Simons, Laurent ;  Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
Non Stationary Multiresolution Analysis
Publication date :
13 September 2010
Event name :
PhD-Day
Event organizer :
The Belgian Mathematical Society
Event place :
Brussels, Belgium
Event date :
13 septembre 2010
Available on ORBi :
since 27 May 2011

Statistics


Number of views
83 (18 by ULiège)
Number of downloads
8 (6 by ULiège)

Bibliography


Similar publications



Contact ORBi