Article (Scientific journals)
Geometric quantities associated to differential operators
Mathonet, Pierre
2000In Communications in Algebra, 28 (2), p. 699-718
Peer Reviewed verified by ORBi
 

Files


Full Text
Mat00GeomQuant.pdf
Author postprint (356.79 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Differntial operator; Tensor density; Module over vector fields
Abstract :
[en] Denote by F_lambda the space of fields of tensor densities of weight -lambda over a manifold M. The space D^p_{lambda,mu} of differential operators of order at most p that map F_lambda onto F_mu are modules over the Lie algebra of vector fields Vect(M). We compute all the Vect(M)-invariant mappings from D^p_{lambda,mu} onto F_nu.
Disciplines :
Mathematics
Author, co-author :
Mathonet, Pierre ;  Université de Liège - ULiège > Département de mathématique > Département de mathématique
Language :
English
Title :
Geometric quantities associated to differential operators
Publication date :
2000
Journal title :
Communications in Algebra
ISSN :
0092-7872
eISSN :
1532-4125
Publisher :
Taylor & Francis Ltd
Volume :
28
Issue :
2
Pages :
699-718
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 18 May 2011

Statistics


Number of views
52 (2 by ULiège)
Number of downloads
208 (1 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
2
OpenCitations
 
2
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi