Hopkinson tensile bar; high strain rate; high speed forming; forming limit diagram; constitutive modelling
Abstract :
[en] The strain rate dependence of plastic yield and failure properties displayed by most metals affects energies, forces and forming limits involved in high speed forming processes. This paper investigates the influence of the strain rate on the forming properties of one laboratory made and three commercial steel grades: a CMnAl TRIP steel, the ferritic structural steel S235JR, the drawing steel DC04 and the ferritic stainless steel AISI 409. First, split Hopkinson tensile bar (SHTB) experiments are carried out to assess the influence of the strain rate on the materials’ stress–strain curves. Subsequently, the obtained SHTB results, together with static tensile test results, are used to model the constitutive behaviour of the investigated steels using the phenomenological Johnson–Cook (JC) model and the Voce model, thus allowing dynamic modelling of forming processes. Finally, forming limit diagrams (FLDs) are calculated using the Marciniak–Kuczynski method. The results clearly show that the effect of the strain rate on forces and energies involved in a forming process, and the forming limits is non-negligible and strongly material dependent.
Disciplines :
Materials science & engineering
Author, co-author :
Verleysen, Patricia; Ghent University > Materials Science and Engineering
Peirs, Jan; Ghent University > Materials Science and Engineering
Van Slycken, Joost; Ghent University > Materials Science and Engineering
Faes, Koen; Belgian Welding Institute
Duchene, Laurent ; Université de Liège - ULiège > Département Argenco : Secteur MS2F > Département Argenco : Secteur MS2F
Language :
English
Title :
Effect of strain rate on the forming behaviour of sheet metals
K.D. Clarke, R.J. Comstock, and M.C. Mataya Effect of strain rate on the yield stress of ferritic stainless steels Metall. Mater. Trans. A: Phys. Met. Mater. Sci. 39 2008 752 762
A. Graf, and W.F. Hosford Calculations of forming limit diagrams Metall. Mater. Trans. A: Phys. Met. Mater. Sci. 21 1990 87 94 (Pubitemid 20645807)
V. Grolleau, G. Gary, and D. Mohr Biaxial testing of sheet materials at high strain rates using viscoelastic bars Exp. Mech. 48 2008 293 306 (Pubitemid 351627099)
A. Hannon, and P. Tiernan A review of planar biaxial tensile test systems for sheet metal J. Mater. Process. Technol. 201 2008 1858 1869
W.F. Hosford, and R.M. Caddell Metal Forming, Mechanics and Metallurgy 2007 Cambridge University Press New York ISBN 0-521-88121-8, pp. 237-254
M. Jie, C.H. Cheng, L.C. Chan, and C.L. Chow Forming limit diagrams of strain-rate dependent sheet metals Int. J. Mech. Sci. 51 2009 269 275
G.R. Johnson, and W.H. Cook A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures Proc. 7th Int. Symp. on Ballistic The Hague, The Netherlands 1983 541 547
R. Kapoor, and S. Nemat-Nasser Determination of temperature rise during high strain rate deformation Mech. Mater. 27 1998 1 12 (Pubitemid 128381252)
H. Kolsky An investigation of the mechanical properties of materials at very high rates of loading Proc. Phys. Soc. Sec. B 62 1949 676 700
Y.S. Lee, Y.N. Kwon, S.H. Kang, S.W. Kim, and J.H. Lee Forming limit of AZ31 alloy sheet and strain rate on warm sheet metal forming J. Mater. Process. Technol. 201 2008 431 435
R.Q. Liang, and A.S. Khan A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures Int. J. Plast. 15 9 1999 963 980 (Pubitemid 129591255)
Z. Marciniak, and K. Kuczynski Limit strains in the processes of stretch-forming sheet metal Int. J. Mech. 9 1967 609 620
Z. Marciniak, K. Kuczynski, and T. Pokora Influence of plastic properties of a material on forming limit diagram for sheet-metal in tension Int. J. Mech. Sci. 15 1973 789 800
M.A. Meyers Dynamic Behaviour of Materials 1994 J. Wiley p. 668
D.A. Oliveira, M.J. Worswick, M. Finn, and D. Newman Electromagnetic forming of aluminium alloy sheet: free-form and cavity fill experiments and model J. Mater. Process. Technol. 170 2005 350 362 (Pubitemid 41526184)
M. Ramezani, and Z.M. Ripin Combined experimental and numerical analysis of bulge test at high strain rates using split Hopkinson pressure bar apparatus J. Mater. Process. Technol. 201 2010 1061 1069
I. Schael, and W. Bleck Determination of crash relevant parameters in tensile tests K.P. Staudhammer, L.E. Murr, M.A. Meyers, Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena 2001 Elsevier Science Ltd. Oxford 639 646 (Chapter 81)
R. Seifried, H. Minamoto, and P. Eberhard Viscoplastic effects occurring in impacts of aluminum and steel bodies and their influence on the coefficient of restitution J. Appl. Mech. 77 2010 041008 41017
M. Seth, V.J. Vohnout, and G.S. Daehn Formability of steel in high velocity impact J. Mater. Process. Technol. 168 2005 390 400 (Pubitemid 41764894)
A. Shimamoto, T. Shimomura, and J. Nam The development of servo dynamic biaxial loading device Key Eng. Mat. 243-244 2003 99 104
J. Van Slycken, P. Verleysen, and J. Degrieck High-strain-rate behavior of low-alloy multiphase aluminum- and silicon-based transformation-induced plasticity steels Metall. Mater. Trans. A: Phys. Met. Mater. Sci. 37A 5 2006 1527 1539
P. Verleysen, J. Degrieck, and T. Verstraete Influence of specimen geometry on split Hopkinson tensile bar tests on sheet materials Exp. Mech. 48 5 2008 587 598
H. Yao, and J. Cao Prediction of forming limit curves using an anisotropic yield function with prestrain induced backstress Int. J. Plast. 8 2002 1013 1038 (Pubitemid 34617517)
I. Zidane, D. Guines, and L. Leotoing Development of an in-plane biaxial test for forming limit curve (FLC) characterization of metallic sheets Meas. Sci. Technol. 21 2010 055701 55711