[en] Consider the regression model Y = m(X) + σ(X) Ɛ , where m(X) = E[Y|X] and σ²(X) = Var[Y|X] are unknown smooth functions and the error Ɛ (with unknown distribution) is independent of X. The pair (X;Y) is subject to generalized selection bias and the response to right censoring. We construct a new estimator for the cumulative distribution function of the error Ɛ , and develop a bootstrap technique to select the smoothing parameter involved in the procedure. The estimator is studied via extended simulations and applied to real unemployment data.
Disciplines :
Quantitative methods in economics & management
Author, co-author :
Laurent, Géraldine ; Université de Liège - ULiège > HEC-Ecole de gestion : UER > UER Opérations
Heuchenne, Cédric ; Université de Liège - ULiège > HEC-Ecole de gestion : UER > Statistique appliquée à la gestion et à l'économie
Language :
English
Title :
Computational treatment of the error distribution in nonparametric regression with right-censored and selection-biased data
Publication date :
24 August 2010
Event name :
The 19th International Conference on Computational Statistics (COMPSTAT2010)