[en] Based on previous studies showing that strontium ranelate (S12911) modulates bone loss in osteoporosis, it could be hypothesized that this drug also is effective on cartilage degradation in osteoarthritis (OA). This was investigated in vitro on normal and OA human chondrocytes treated or not treated with interleukin-1beta (IL-1beta). This model mimics, in vitro, the imbalance between chondroformation and chondroresorption processes observed in vivo in OA cartilage. Chondrocytes were isolated from cartilage by enzymatic digestion and cultured for 24-72 h with 10(-4)-10(-3) M strontium ranelate, 10(-3) M calcium ranelate, or 2 x 10(-3) M SrCl2 with or without IL-1beta or insulin-like growth factor I (IGF-I). Stromelysin activity and stromelysin quantitation were assayed by spectrofluorometry and enzyme amplified sensitivity immunoassay (EASIA), respectively. Proteoglycans (PG) were quantified using a radioimmunoassay. Newly synthesized glycosaminoglycans (GAGs) were quantified by labeled sulfate (Na2(35)SO4) incorporation. This method allowed the PG size after exclusion chromatography to be determined. Strontium ranelate, calcium ranelate, and SrCl2 did not modify stromelysin synthesis even in the presence of IL-1beta. Calcium ranelate induced stromelysin activation whereas strontium compounds were ineffective. Strontium ranelate and SrCl2 both strongly stimulated PG production suggesting an ionic effect of strontium independent of the organic moiety. Moreover, 10(-3) M strontium ranelate increased the stimulatory effect of IGF-I (10(-9) M) on PG synthesis but did not reverse the inhibitory effect of IL-1beta. Strontium ranelate strongly stimulates human cartilage matrix formation in vitro by a direct ionic effect without stimulating the chondroresorption processes. This finding provides a preclinical basis for in vivo testing of strontium ranelate in OA.
Tsouderos, Y.; Université de Liège - ULiège > Département des sciences de la motricité > Evaluation et entraînement des aptitudes physiques
Crielaard, Jean-Michel ; Université de Liège - ULiège > Département des sciences de la santé publique > Santé publique, Epidémiologie et Economie de la santé
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Franchimont P., Bassleer C., Henrotin Y. (1989) Effects of hormones and drugs on cartilage repair. J Rheumatol 18:5-9.
Dean D.D., Martel-Pelletier J., Pelletier J.P., Howell D.S., Woessner J.F. (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 84:678-685.
Wu J.J., Lark M.W., Chun L.E., Eyre D.R. (1991) Sites of stromelysin cleavage in collagen type II, IX, X, and XI of cartilage. J Biol Chem 266:5625-5628.
Pasternak R.D., Hubbs S.J., Callese R.G., Manks R.L., Conatt J.M., Dipasquale G. (1986) Interleukin-I stimulates the secretion of proteoglycan and collagen degrading proteases by rabbit articular chondrocytes. Clin Immunol Immunopathol 41:351-367.
Okada Y., Shimnei M., Tanaka O., Naka K., Kimura A., Nakanishi I., Bayliss M., Iwata K., Nagase H. (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 66:680-690.
Lohmander S., Hoerrner L., Lark M. (1993) Metalloproteinases, tissue inhibitor, and proteoglycan fragments in knee synovial fluid in human osteoarthritis. Arthritis Rheum 36:181-189.
Hembry R., Bagga M., Reynolds J., Hamblen D. (1995) Immunolocalization studies on six metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis 54:25-32.
Moskowitz R., Davis W., Sammarco J., Martens M., Baker J., Mayor M., Burstein A.H., Frankel V.H. (1973) Experimentally induced degenerative joints lesions following partial meniscectomy in the rabbit. Arthritis Rheum 16:397-466.
Lust G., Pronsky W. (1972) Glycosaminoglycan content of normal and degenerative articular cartilage from dogs. Clin Chim Acta 39:281-286.
Urban J.P.G., Bayliss M.T. (1989) Regulation of proteoglycan synthesis rate in cartilage in vitro: Influence of extracellular ionic composition. Biochim Biophys Acta 992:59-65.
Urban J.P.G., Hall A.C., Gehl K.A. (1993) Regulation of matrix synthesis rates by ionic and osmotic environment of articular chondrocytes. J Cell Physiol 154:262-270.
Marie P.J., Skoryna S.C., Pivon R.J., Chabot G., Glorieux F.H., Stara J.F. (1985) Histomorphometry of bone changes in stable strontium therapy., Hemphill DD (ed.) Proceedings of the University of Missouri's Nineteenth Annual Conference on Trace Substances in Environmental Health. Columbia University, New York, NY, USA; 193-206.
Reinholt F., Engfeldt B., Heinegard D., Hjerpe A. (1985) Proteoglycans and glycosaminoglycans of normal and strontium rachitic epiphyseal cartilage. Collagen Rel Res 5:41-53.
Shorr E., Carter A.C. (1952) The usefulness of strontium as an adjuvant to calcium in the remineralization of the skeleton in osteoporosis in man. Bull Hosp Jt Dis 13:59-66.
Meunier P.J., Slosman D., Delmas P.D., Selbert J.L., Albanese C., Brandi M.L., Lorenc R., Beck-Jensen J.E., De Vernejoul M.C., Provedini D.M., Tsouderos Y., Reginster J.Y. (1997) Strontium ranelate as a treatment of vertebral osteoporosis. J Bone Miner Res , abstract 107; 12(1):S129.
Reginster J.Y., Roux C., Tsouderos Y., Juspin I. (1998) Role of the strontium ranelate in prevention of early postmenopausal bone loss: A double blind, prospective, randomized, placebo-controlled study. Arthritis Rheum 41:S129.
Marie P.J., Hott M., Modrowski D., De Pollak C., Guillemin J., Deloffre P., Tsouderos Y. (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607-615.
Bocquet J., Daireaux M., Langris M., Jouis V., Pujol J.P., Beliard R., Loyau G. (1986) Effects of an interleukin-1 like factor (mononuclear cell factor) on proteoglycan synthesis in cultured human articular chondrocytes. Biochim Biophys Res Commun 134:539-549.
Labarca A., Paigen K. (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344-352.
Housley T.J., Baumann A.P., Braun I.D., Davis G., Seperack P.K., Wilhelm S.M. (1993) Recombinant hamster ovary cell matrix metalloproteinase-3 (MMP-3, stromelysin-1). Role of calcium in promatrix metalloproteinase-3 (pro-MMP-3, prostromelysin-1) activation and thermostability of the low mass catalytic domain of MMP-3. J Biol Chem 268:4481-4487.
Pardo A., Ramiriez R., Gutierrez-Kobeth L., Mendoza P., Bauer E., Selman M. (1991) Purification of procollagenase activator present in the medium of cultured guinea pig carrageenin granuloma. Connect Tiss Res 26:259-268.
Gysen P., Franchimont P. (1984) Radioimmunoassay of human proteoglycans. J Immunoassay 5:221-243.
Bassleer C., Henrotin Y., Reginster J.Y., Franchimont P. (1992) Effects of tiaprofenic acid and acetylsalicylic acid on human articular chondrocytes in 3-dimensional culture. J Rheumatol 19:1433-1438.
Zerbe G.O. (1979) Randomization analysis of the completely randomised design extended to growth and response curves. J Am Stat Assoc 74:215-224.
Nagase H., Enghild J.J., Morodomi T., Salvesen G. (1990) Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinase and (4-aminophenyl) mercuric acetate. Biochemistry 29:5783-5789.
Pelletier J.P., Mineau F., Faure M.P., Martel-Pelletier J. (1990) Imbalance between the mechanisms of activation and inhibition of metalloproteinases in the early lesions of experimental osteoarthritis. Arthritis Rheum 33:1466-1476.
Hamilton J.A., Hart P.H., Leizer T., Vitti G.F., Campbell I.K. (1991) Regulation of plasminogen activator activity in arthritic joints. J Rheumatol 18:106-109.
Canalis E., Hott M., Deloffre P., Tsouderos Y., Marie P.J. (1996) The divalent strontium salt S 12911 enhances bone cell replication and bone formation in vitro. Bone 18:517-523.
Svensson O., Hjerpe A., Reinholt F., Wikstrom B., Engfeld B. (1985) The effect of strontium and manganese on freshly isolated human chondrocytes. Acta Path Microbiol Immunol Scand 93:115-120.
Brandt K.D., Palmoski M. (1976) Organisation of ground substance proteoglycans in normal and osteoarthritic knee cartilage. Arthrtitis Rheum 19:209-215.
Shoback D.M., Chen T.H., Lattyak B., King K., Johnson R. (1993) Effects of high extracellular calcium and strontium on inositol polyphosphates in bovine parathyroid cells. J Bone Miner Res 8:891-899.
Nemeth E.F., Scarpa A. (1987) Are changes in intracellular free calcium necessary for regulating secretion in parathyroid cells?. Ann NY Acad Sci 493:542-551.
Sienaert I., Missian L., De Smedt H., Parys J., Sipma H., Casteels R. (1997) Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-triphosphate receptor. J Biol Chem 272:25899-25906.
McNaughton N., Randall A. (1997) Electrophysiological properties of the human N-type Ca2+ channel: I. Channel gating in Ca2+, Ba2+ and Sr2+ containing solution. Neuropharmacology 36:895-915.
Eliam Y., Beit-Or A., Nevo Z. (1985) Decrease in cytosolic free Ca2+ and enhanced proteoglycan synthesis induced by cartilage derived growth factors in cultured chondrocytes. Biochem Biophys Res Commun 132:770-779.
Beit-Or A., Nevo Z., Kalina M., Eilam Y. (1990) Decrease in the basal levels of cytosolic free calcium in chondrocytes during aging in culture: Possible role as differentiation-signal. J Cell Physiol 144:197-203.
Metcalfe J.C., Moore J.P., Smith G.A., Hesketh T.R. (1986) Calcium and cell proliferation. Br Med Bull 42:405-412.
Vittur F., Grandolfo M., Fragonas E., Godeas C., Paoletti S., Pollesello P., Kvam B.J., Ruzzier F., Starc T., Mozrzymas J.W., Martina M., Debernard D. (1994) Energy metabolism, replicative ability, intracellular calcium concentration, and ionic channels of horse articular chondrocytes. Exp Cell Res 210:130-136.
Sugimoto T., Kanatani M., Kano J., Kobayashi T., Yamaguchi T., Fukase M., Chihara K. (1994) IGF-I mediates the stimulatory effect of high calcium concentration on osteoblast cell proliferation. Am J Physiol 266:709-716.
Henrotin Y., Labasse A., Deloffre P., Tsouderos Y., Reginster J.Y. (1998) Regulation of the chondrocyte metabolism by a new divalent strontium salt (S 12911). Bone , abstract W120; 23:S344.
Su Y., Bonnet J., Deloffre P., Tsouderos Y., Baron R. (1992) The strontium salt S12911 inhibits bone resorption in mouse calvaria and isolated rat osteoclast cultures. Bone Miner , abstract 449; 17:188.
Meunier P.J., Slosman D., Delmas P. (1996) The strontium salt S12911: A new candidate for the treatment of osteoporosis. Osteoporos Int , abstract 634; 6:S241.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.