Paper published in a book (Scientific congresses and symposiums)
Active exploration by searching for experiments that falsify the computed control policy
Fonteneau, Raphaël; Murphy, Susan; Wehenkel, Louis et al.
2011In Proceedings of the 2011 IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-11)
Peer reviewed
 

Files


Full Text
adprl11_Fonteneau_et_al.pdf
Publisher postprint (665.68 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reinforcement learning; active learning; sequential decision making
Abstract :
[en] We propose a strategy for experiment selection - in the context of reinforcement learning - based on the idea that the most interesting experiments to carry out at some stage are those that are the most liable to falsify the current hypothesis about the optimal control policy. We cast this idea in a context where a policy learning algorithm and a model identification method are given a priori. Experiments are selected if, using the learnt environment model, they are predicted to yield a revision of the learnt control policy. Algorithms and simulation results are provided for a deterministic system with discrete action space. They show that the proposed approach is promising.
Disciplines :
Computer science
Author, co-author :
Fonteneau, Raphaël ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Murphy, Susan
Wehenkel, Louis  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Active exploration by searching for experiments that falsify the computed control policy
Publication date :
April 2011
Event name :
2011 IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-11)
Event place :
Paris, France
Event date :
April 11-15, 2011
Audience :
International
Main work title :
Proceedings of the 2011 IEEE International Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL-11)
Peer reviewed :
Peer reviewed
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Available on ORBi :
since 14 April 2011

Statistics


Number of views
70 (8 by ULiège)
Number of downloads
248 (7 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
1
OpenAlex citations
 
2

Bibliography


Similar publications



Contact ORBi