Defaweux, Valérie ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie humaine
Mignon, Bernard ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires > Parasitologie et pathologie des maladies parasitaires
Monod, M.
Burmester, A.
Wöstemeyer, J.
Staib, P.
Language :
English
Title :
Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae
Publication date :
2011
Journal title :
Eukaryotic Cell
ISSN :
1535-9778
eISSN :
1535-9786
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Baldo, A., et al. 2010. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br. J. Dermatol. 162:990-997.
Baldo, A., et al. 2008. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes. J. Med. Microbiol. 57:1152-1156.
Brouta, F., et al. 2003. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med. Mycol. 41:495-501.
Burmester, A., et al. 2011. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biol. 12:R7.
Coquette, A., N. Berna, A. Vandenbosch, M. Rosdy, and Y. Poumay. 1999. Differential expression and release of cytokines by an in vitro reconstructed human epidermis following exposure to skin irritant and sensitizing chemicals. Toxicol. In Vitro 13:867-877.
da Silva Ferreira, M. E., et al. 2006. The akuB(KU80) mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 5:207-211.
Duek, L., G. Kaufman, Y. Ulman, and I. Berdicevsky. 2004. The pathogenesis of dermatophyte infections in human skin sections. J. Infect. 48:175-180.
Fachin, A. L., M. S. Ferreira-Nozawa, W. Maccheroni, Jr., and N. M. Martinez- Rossi. 2006. Role of the ABC transporter TruMDR2 in terbinafine, 4 nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J. Med. Microbiol. 55:1093-1099.
Ferreira-Nozawa, M. S., et al. 2006. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med. Mycol. 44:641-645.
Fumeaux, J., et al. 2004. First report of Arthroderma benhamiae in Switzerland. Dermatology 208:244-250.
Idnurm, A., and B. J. Howlett. 2002. Isocitrate lyase is essential for pathogenicity of the fungus Leptosphaeria maculans to canola (Brassica napus). Eukaryot. Cell 1:719-724.
Krappmann, S., C. Sasse, and G. H. Braus. 2006. Gene targeting in gillusAspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end-joining deficient genetic background. Eukaryot. Cell 5:212-215.
Lampe, M. A., et al. 1983. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 24:120-130.
Liu, O. W., et al. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell 135:174-188.
Lorenz, M. C., and G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412:83-86.
McKinney, J. D., et al. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735-738.
Mignon, B., et al. 2008. Immunization and dermatophytes. Curr. Opin. Infect. Dis. 21:134-140.
Ninomiya, Y., K. Suzuki, C. Ishii, and H. Inoue. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. U. S. A. 101:12248-12253.
Onyewu, C., et al. 2007. Targeting the calcineurin pathway enhances ergosterol biosynthesis inhibitors against Trichophyton mentagrophytes in vitro and in a human skin infection model. Antimicrob. Agents Chemother. 51:3743-3746.
Rashid, A., M. Edward, and M. D. Richardson. 1995. Activity of terbinafine on Trichophyton mentagrophytes in a human living skin equivalent model. J. Med. Vet. Mycol. 33:229-233.
Rude, T. H., D. L. Toffaletti, G. M. Cox, and J. R. Perfect. 2002. Relationship of the glyoxylate pathway to the pathogenesis of Cryptococcus neoformans. Infect. Immun. 70:5684-5694.
Schaller, M., et al. 2004. Polymorphonuclear leukocytes (PMNs) induce protective Th1-type cytokine epithelial responses in an in vitro model of oral candidosis. Microbiology 150:2807-2813.
Schöbel, F., et al. 2007. Aspergillus fumigatus does not require fatty acid metabolism via isocitrate lyase for development of invasive aspergillosis. Infect. Immun. 75:1237-1244.
Smijs, T. G., J. A. Bouwstra, H. J. Schuitmaker, M. Talebi, and S. Pavel. 2007. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J. Antimicrob. Chemother. 59:433-440.
Staib, P., et al. 2010. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology 156:884-895.
Tabart, J., et al. 2007. Reconstructed interfollicular feline epidermis as a model for Microsporum canis dermatophytosis. J. Med. Microbiol. 56:971- 975.
Takashio, M. 1972. Sexual reproduction of some Arthroderma and Nannizzia on diluted Sabouraud agar with or without salts. Mykosen 15:11-17.
Tüncher, A., P. Sprote, A. Gehrke, and A. A. Brakhage.2005. The CCAATbinding complex of eukaryotes: evolution of a second NLS in the HapB subunit of the filamentous fungus Aspergillus nidulans despite functional conservation at the molecular level between yeast, A. nidulans and human. J. Mol. Biol. 352:517-533.
Weitzman, I., and R. C. Summerbell. 1995. The dermatophytes. Clin. Microbiol. Rev. 8:240-259.
White, T. C., B. G. Oliver, Y. Gräser, and M. R. Henn. 2008. Generating and testing molecular hypotheses in the dermatophytes. Eukaryot. Cell 7:1238- 1245.
Yamada, T., K. Makimura, and S. Abe. 2006. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med. Mycol. 44:243-252.
Yamada, T., et al. 2009. Enhanced gene replacements in Ku80 disruption mutants of the dermatophyte, Trichophyton mentagrophytes. FEMS Microbiol. Lett. 298:208-217.
Yamada, T., et al. 2009. Agrobacterium tumefaciens-mediated transformation of the dermatophyte, Trichophyton mentagrophytes: an efficient tool for gene transfer. Med. Mycol. 47:485-494.
Yamada, T., K. Makimura, K. Uchida, and H. Yamaguchi. 2005. Reproducible genetic transformation system for two dermatophytes, Microsporum canis and Trichophyton mentagrophytes. Med. Mycol. 43:533-544.
Zakikhany, K., et al. 2007. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 9:2938-2954.