Adult; Analysis of Variance; Behavior; Brain Stem/*physiology; *Color; Female; Humans; *Light; Magnetic Resonance Imaging; Male; Positron-Emission Tomography
Abstract :
[en] BACKGROUND: Relatively long duration retinal light exposure elicits nonvisual responses in humans, including modulation of alertness and cognition. These responses are thought to be mediated in part by melanopsin-expressing retinal ganglion cells which are more sensitive to blue light than violet or green light. The contribution of the melanopsin system and the brain mechanisms involved in the establishment of such responses to light remain to be established. METHODOLOGY/PRINCIPAL FINDINGS: We exposed 15 participants to short duration (50 s) monochromatic violet (430 nm), blue (473 nm), and green (527 nm) light exposures of equal photon flux (10(13)ph/cm(2)/s) while they were performing a working memory task in fMRI. At light onset, blue light, as compared to green light, increased activity in the left hippocampus, left thalamus, and right amygdala. During the task, blue light, as compared to violet light, increased activity in the left middle frontal gyrus, left thalamus and a bilateral area of the brainstem consistent with activation of the locus coeruleus. CONCLUSION/SIGNIFICANCE: These results support a prominent contribution of melanopsin-expressing retinal ganglion cells to brain responses to light within the very first seconds of an exposure. The results also demonstrate the implication of the brainstem in mediating these responses in humans and speak for a broad involvement of light in the regulation of brain function.
Disciplines :
Radiology, nuclear medicine & imaging
Author, co-author :
Vandewalle, Gilles ; Université de Liège - ULiège > Centre de recherches du cyclotron
Schmidt, Christina ; Université de Liège - ULiège > Centre de recherches du cyclotron
Albouy, Geneviève ; Université de Liège - ULiège > Centre de recherches du cyclotron
Sterpenich, Virginie ; Université de Liège - ULiège > Centre de recherches du cyclotron
Darsaud, Annabelle ; Université de Liège - ULiège > Centre de recherches du cyclotron
Rauchs, Géraldine; Université de Liège - ULiège > Centre de recherches du cyclotron
Berken, Pierre-Yves
Balteau, Evelyne ; Université de Liège - ULiège > Centre de recherches du cyclotron - Département de physique
Degueldre, Christian ; Université de Liège - ULiège > Centre de recherches du cyclotron
Luxen, André ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie organique de synthèse - Centre de recherches du cyclotron
Maquet, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Neurologie Sart Tilman
Dijk, Derk-Jan
Language :
English
Title :
Brain responses to violet, blue, and green monochromatic light exposures in humans: prominent role of blue light and the brainstem
Publication date :
2007
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Djk DJ, Lockley SW (2002) Integration of human sleep-wake regulation and circadian rhythmicity. J Appl Physiol 92: 852-862.
Cajochen C, Munch M, Kobialka S, Krauchi K, Steiner R, et al. (2005) High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light J Clin Endocrinol Metab 90: 1311-1316.
Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88: 4502-4505.
Lockley SW, Evans EE, Scheer FAJL, Brainard GC, Czeisler CA, et al. (2006) Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. Sleep 29: 161-168.
Munch M, Kobialka S, Steiner R, Oelhafen P, Wirz-Justice A, et al. (2006) Wavelength-dependent effects of evening light exposure on sleep architecture and sleep EEG power density in men. Am J Physiol Regul Integr Comp Physiol 290: R1421-1428.
Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, et al. (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21: 6405-6412.
Perrin F, Peigneux P, Fuchs S, Verhaeghe S, Laureys S, et al. (2OQ4) Nonvisual responses to light exposure in the human brain during the circadian night. Curr Biol 14: 1842-1846.
Vandewalle G, Gais S, Schabus M, Balteau E, Carrier J, et al. (2007) Wavelengh-Dependent Modulation of Brain Responses to a Working Memory Task by Daytime light Exposure. Cerebral Cortex [epub ahead of print].
Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4: 621-626.
Thapan K, Arendt J, Skene DJ (2001) An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans. J Physiol 535: 261-267.
Gamfin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, et al. (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47: 946-954.
Dkhissi-Benyahya O, Gronfier C, De Vanssay W, Flamant F, Cooper HM (2007) Modeling the role of mid-wavelength cones in circadian responses to Light. Neuron 53: 677-687.
Cajochen C, Jud C, Munch M, Kobialka S, Wirz-Justice A, et al. (2006) Evening exposure to blue light stimulates the expression of the dock gene PER2 in humans. Eur J Neurosci 23: 1082-1086.
Buck SL (2003) Rod-cone interaction in human vision. In: Chalupa LM, Werner JS, eds. The Visual Neurosciences. Cambridge, Massachussets, USA: The MIT Press. pp 863-878.
Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8: 276-286.
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, et al. (2000) A novel human opsin in the inner retina. J Neurosci 20: 600-605.
Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070-1073.
Melyan Z, Tarttelin EE, Bellingham J, Lucas RJ, Hankins MW (2005) Addition of human mclanopsin renders mammalian cells photoresponsive. Nature 433: 741-745.
Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, et al. (2005) Illumination of the melanopsin signaling pathway. Science 307: 600-604.
Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V, et al. (2005) Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745-149.
Panda S, Sato TK, Castrucci AM, Rollag, MD, DeGrip WJ, et al. (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting, Science 298: 2213-2216.
Hattar S, Kumar M, Park A, Tong P, Tung J, et al. (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497: 326-349.
Gooley JJ, Lu J, Fischer D, Saper GB (2003) A broad role for melanopsin in nonvisual photoreception. J Neurosci 23: 7093-7106.
Dacey DM, Liao HW, Peterson BB, Robinson, FR, Smith VC, et al. (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433: 749-754.
Wirz-Justice A, Terman M, Oren DA, Goodwin FK, Kripke DF, et al. (2004) Brightening depression. Science 303: 467-469.
Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH, et al. (2003) Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424: 76-81.
Sollars PJ, Smeraski CA, Kaufman JD, Ogilvie MD, Provencio I, et al. (2003) Melanopsin and non-melanopsin-expressing retinal ganglion cells innervate the hypothalamic suprachiasmatic nucleus. Vis Neurosci 20: 601-610.
Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, et al. (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299: 245-247.
Aggelopoulos NC, Meissl H J2000 Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions. J Physiol 523: 211-222.
Revell VL, Arendt J, Fogg LF, Skene DJ (2006) Alerting effects of light are sensitive to very short wavelengths. Neurosci Lett 399: 96-100.
Meijer JH, Watanabe K, Schaap J, Albus H, Detari L (1998) Light responsiveness of the suprachiasmatic nucleus: long-term multiunit and single-unit recordings in freely moving rats. J Neurosci 18: 9078-9087.
Morin LP, Blanchard JH (2005) Descendin projections of the hamster intergeniculate leaflet: relationship to the sleep/arousal and visuomotor systems. J Comp Neurol 487: 204-216.
Saper CB, Lu J, Chou TC, Gooley J (2005) The hypothalamic integritor for circadian rhythms. Trends Neurosci 28: 152-157.
Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (200l) A neural circuit for circadian regulation of arousal. Nat Neurosci 4: 732-738.
Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4: 97-110.
Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14: 540-545.
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupler DJ (1989) The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res 28: 193-213.
Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56: 893-897.
Steer RA, Ball R, Ranieri WF, Beck AT (1997) Further evidence for the construct validity of the Beck depression Inventory-II with psychiatric outpatients. Psychol Rep 80: 443-446.
Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97-113.
Cajochen C, Munch M, Knoblauch V, Blatter K, Wirz-Justice A (2006) Age-related in the circadian and homeostatic regulation of human sleep. Chronobiol Int 23: 461-474.
Braver TS, Barch DM, Kelley WM, Buckner RL, Cohen NJ, et al. (2001) Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks. Neuroimage 14: 48-59.
Akerstedt T, Gillberg M (1990) Subjective and objective sleepiness in the active individual. Int J Neurosci 52: 29-37.
Grandjean D, Sander D, Pourtois G, Schwartz S, Seghier ML, et al. (2005) The voices of wrath: brain responses to angry prosody in meaningless speech. Nat Neurosci 8: 145-146.
Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurrments in observers of known genotype. Vision Res 40: 1711-1737.
ICNIRP (1997) Guidelines on limits of exposure to broad-band incoherent optical radiation (0.38 to 3 microM). International Commission on Non-Ionizing Radiation Protection. Health Phys 73: 539-554.
Greenwood KM (1994) Long4crm stability and psychometric properties of the Composite Scale of Morningness. Ergonomics 37: 377-383.
Sander D, Grandjean D, Pourtois G, Schwartz S, Seghier ML, et al. (2005) Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody. Neuroimage 28: 848-858.
Kastner S, O'Connor DH, Fukui MM, Fehd HM, Herwig U, et al. (2004) Functional imaging of the human lateral geniculate nucleus and pulvinar. J Neurophysiol 91: 438-448.
Sterpenich V, D'Argembeau A, Desseilles M, Balteau E, Albouy G, et al. (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26: 7416-7423.
Jones BE (2003) Arousal systems. Front Biosci 8: s438-451.
Hankins MW, Lucas RJ (2002) The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 12: 191-198.
Barnard AR, Hattar S, Hankins MW, Lucas RJ (2006) Melanopsin regulates visual processing in the mouse retina. Curr Biol 16: 389-395.
Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleusnorepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28: 403-450.
Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257-1263.
Foucher JR, Otzenberger H, Gounot D (2004) Where arousal meets attention: a simultaneous fMRI and EEG recording study. Neuroimage 22: 688-697.
Cabeza R, Nyberg L (2000) Imaging cognition II: An empirical review of 275 PET and fMRI studies. J Cogn Neurosci 12: 1-47.
Morris JS, Ohman A, Dolan RJ (1999) A subcortical pathway to the right amygdala mediating "unseen" fear. Proc Natl Acad Sci U S A 96: 1680--1685.
Aggleton JP (1992) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction New York: Wiley.
Castle M, Comoli E, Loewy AD (2005) Autonomic brainstem nuclei are linked to the hippocampus. Neuroscience 134: 657-669.