[en] In this paper, the question of existence of a natural and projectively equivariant symbol calculus is analysed
using the theory of projective Cartan connections. A close relationship is established between the existence of
such a natural symbol calculus and the existence of an sl(m+1,R)-equivariant calculus over R^m . Moreover,
it is shown that the formulae that hold in the non-critical situations over R^m for the sl(m+1,R)-equivariant
calculus can be directly generalized to an arbitrary manifold by simply replacing the partial derivatives by
invariant differentiations with respect to a Cartan connection.
Disciplines :
Mathematics
Author, co-author :
Mathonet, Pierre ; Université de Liège - ULiège > Département de mathématique > Département de mathématique
Radoux, Fabian ; Université de Liège - ULiège > Département de mathématique > Géométrie et théorie des algorithmes
Language :
English
Title :
Cartan connections and natural and projectively equivariant quantizations
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
F. BONIVER, S. HANSOUL, P. MATHONET and N. PONCIN, 'Equivariant symbol calculus for differential operators acting on forms', Lett. Math. Phys. 62 (2002) 219-232.
F. BONIVER and P. MATHONET, TFFT-equivariant quantizations', J. Geom. Phys. 56 (2006) 712-730.
M. BORDEMANN, 'Sur l'existence d'une prescription d'ordre naturelle projectivement invariante', Preprint, 2002, arXiv:math.DG/0208171.
S. BOUARROUDJ, 'Formula for the projectively invariant quantization on degree three', C. R. Acad. Sci. Paris Sér. I Math. 333 (2001) 343-346.
S. BOUARROUDJ, 'Projectively equivariant quantization map', Lett. Math. Phys. 51 (2000) 265-274.
A. ČAP, J. SLOVÁK and V. SOUČEK, 'Invariant operators on manifolds with almost Hermitian symmetric structures. I. Invariant differentiation', Acta Math. Univ. Comenian. (N.S.) 66 (1997) 33-69.
A. ČAP, J. SLOVÁK and V. SOUČEK, 'Invariant operators on manifolds with almost Hermitian symmetric structures. II. Normal Cartan connections', Acta Math. Univ. Comenian. (N.S.) 66 (1997) 203-220.
P. B. COHEN, Y. MANIN and D. ZAGIER, 'Automorphic pseudodifferential operators', Algebraic aspects of integrable systems, Progress in Nonlinear Differential Equations and their Applications 26 (Birkhäuser, Boston, MA, 1997) 17-47.
C. DUVAL, P. LECOMTE and V. OVSIENKO, 'Conformally equivariant quantization: existence and uniqueness', Ann. Inst. Fourier (Grenoble) 49 (1999) 1999-2029.
C. DUVAL and V. OVSIENKO, 'Projectively equivariant quantization and symbol calculus: noncommutative hypergeometric functions', Lett. Math. Phys. 57 (2001) 61-67.
D. J. F. FOX, 'Projectively invariant star products', IMRP Int. Math. Res. Pap. (2005) no. 9 461-510.
S. HANSOUL, 'Projectively equivariant quantization for differential operators acting on forms', Lett. Math. Phys. 70 (2004) 141-153.
S. HANSOUL, 'Existence of natural and projectively equivariant quantizations', Adv. Math. 214 (2007) 832-864.
J. HEBDA and C. ROBERTS, 'Examples of Thomas-Whitehead projective connections', Differential Geom. Appl. 8 (1998) 87-104.
J. E. HUMPHREYS, Introduction to Lie algebras and representation theory, 2nd edn, Graduate Texts in Mathematics 9 (Springer, New York, 1978).
S. KOBAYASHI, Transformation groups in differential geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 70 (Springer, New York, 1972).
P. B. A. LECOMTE, 'Classification projective des espaces d'opérateurs différentiels agissant sur les densités', C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 287-290.
P. B. A. LECOMTE, 'Towards projectively equivariant quantization', Progr. Theoret. Phys. Suppl. 144 (2001) 125-132; Noncommutative geometry and string theory, Yokohama, 2001.
P. B. A. LECOMTE and V. YU. OVSIENKO, 'Projectively equivariant symbol calculus', Lett. Math. Phys. 49 (1999) 173-196.
P. MATHONET and F. RADOUX, 'Natural and projectively equivariant quantiations by means of Cartan connections', Lett. Math. Phys. 72 (2005) 183-196.
C. ROBERTS, 'The projective connections of T. Y. Thomas and J. H. C. Whitehead applied to invariant connections', Differential Geom. Appl. 5 (1995) 237-255.
C. ROBERTS, 'Relating Thomas-Whitehead projective connections by a gauge transformation', Math. Phys. Anal. Geom. 7 (2004) 1-8.
T. Y. THOMAS, 'A projective theory of affinely connected manifolds', Math. Z. 25 (1926) 723-733.
H. WEYL, 'Zur infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung', Göttingen Nachr. (1921) 99-122.
J. H. C. WHITEHEAD, 'The representation of projective spaces', Ann. of Math. (2) 32 (1931) 327-360.
N. M. J. WOODHOUSE, Geometric quantization, 2nd edn, Oxford Mathematical Monographs (Oxford Science Publications, The Clarendon Press Oxford University Press, New York, 1992).
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.