Article (Scientific journals)
Natural and Projectively Invariant Quantizations on Supermanifolds
Leuther, Thomas; Radoux, Fabian
2011In Symmetry, Integrability and Geometry: Methods and Applications
Peer Reviewed verified by ORBi
 

Files


Full Text
sigma11-034.pdf
Publisher postprint (377.47 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
supergeometry; differential operators; quantization maps; projective invariance
Abstract :
[en] The existence of a natural and projectively invariant quantization in the sense of P. Lecomte [Progr. Theoret. Phys. Suppl. (2001), no. 144, 125-132] was proved by M. Bordemann [math.DG/0208171], using the framework of Thomas-Whitehead connections. We extend the problem to the context of supermanifolds and adapt M. Bordemann's method in order to solve it. The obtained quantization appears as the natural globalization of the pgl(n+1|m)-equivariant quantization on Rn|m constructed by P. Mathonet and F. Radoux in [arXiv:1003.3320]. Our quantization is also a prolongation to arbitrary degree symbols of the projectively invariant quantization constructed by J. George in [arXiv:0909.5419] for symbols of degree two.
Disciplines :
Mathematics
Author, co-author :
Leuther, Thomas ;  Université de Liège - ULiège > Doct. sc. (math. - Bologne)
Radoux, Fabian ;  Université de Liège - ULiège > Département de mathématique > Géométrie et théorie des algorithmes
Language :
English
Title :
Natural and Projectively Invariant Quantizations on Supermanifolds
Alternative titles :
[fr] Quantifications Naturelles et Projectivement Invariantes sur les Supervariétés
Publication date :
31 March 2011
Journal title :
Symmetry, Integrability and Geometry: Methods and Applications
eISSN :
1815-0659
Publisher :
Department of Applied Research, Institute of Mathematics of National Academy of Science of Ukraine, Ukraine
Special issue title :
SIGMA 7 (2011)
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 31 March 2011

Statistics


Number of views
115 (18 by ULiège)
Number of downloads
89 (8 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
4
OpenCitations
 
2
OpenAlex citations
 
8

Bibliography


Similar publications



Contact ORBi