Abstract :
[en] We recently have demonstrated the existence of spontaneous hyperpolarizations in midbrain dopaminergic neurons of neonatal but not adult rats. These events are mediated by the opening of apamin-sensitive K(+) channels after a rise in the intracellular concentration of Ca(2+). They are resistant to tetrodotoxin in most cases and are probably endogenous (i.e., not synaptically activated). Here their mechanism was investigated. Cyclopiazonic acid (10 microM), a specific inhibitor of endoplasmic reticulum Ca(2+) ATPases, reversibly abolished the events. Caffeine, which promotes Ca(2+) release from intracellular stores, had concentration-dependent effects. At 1 mM, it markedly and steadily increased the frequency and the amplitude of the hyperpolarizations. At 10 mM, it induced a transient increase in their frequency followed by their cessation. All these effects were quickly reversible. Ryanodine (10 microM), which decreases the conductance of Ca(2+) release channels, irreversibly blocked the spontaneous hyperpolarizations. Dantrolene (100 microM), a blocker of Ca(2+) release from sarcoplasmic reticulum of striated muscle, did not affect the events. On the other hand, Cd(2+) (100-300 microM), a broad antagonist of membrane voltage-gated Ca(2+) channels, significantly reduced the amplitude and the frequency of the hyperpolarizations. However, when the frequency of the events was increased by 1 mM caffeine, Cd(2+) affected them to a smaller extent, whereas cyclopiazonic acid still abolished them. We conclude that internal stores are the major source of Ca(2+) ions that induce the K(+) channel openings underlying the spontaneous hyperpolarizations of these neurons.
Scopus citations®
without self-citations
27