Influence of Zeeman splitting and thermally excited polaron states on magnetoelectrical and magnetothermal properties of magnetoresistive polycrystalline manganite La0.8Sr0.2MnO3
[en] Some possible connection between spin and charge degrees of freedom in magnetoresistive manganites is investigated through a thorough experimental study of the magnetic [alternating current susceptibility and direct current (dc) magnetization) and transport (resistivity and thermal conductivity) properties. Measurements are reported in the case of well characterized polycrystalline La0.8Sr0.2MnO3 samples. The experimental results suggest rather strong field-induced polarization effects in our material, clearly indicating the presence of ordered ferromagnetic regions inside the semiconducting phase. Using an analytical expression which fits the spontaneous dc magnetization, the temperature and magnetic field dependences of both electrical resistivity and thermal conductivity data are found to be well reproduced through a universal scenario based on two mechanisms: (i) a magnetization dependent spin polaron hopping influenced by a Zeeman splitting effect and (ii) properly defined thermally excited polaron states which have to be taken into account in order to correctly describe the behavior of the less conducting region. Using the experimentally found values of the magnetic and electron localization temperatures, we obtain L=0.5 nm and m(p) = 3.2 me for estimates of the localization length (size of the spin polaron) and effective polaron mass, respectively. (C) 2007 American Institute of Physics.
Disciplines :
Physics
Author, co-author :
Sergeenkov, S.
Mucha, Jan ; Université de Liège - ULiège > Physique statistique appliquée et des matériaux
Pekala, M.
Drozd, V.
Ausloos, Marcel ; Université de Liège - ULiège > Département de physique > Physique statistique appliquée et des matériaux
Language :
English
Title :
Influence of Zeeman splitting and thermally excited polaron states on magnetoelectrical and magnetothermal properties of magnetoresistive polycrystalline manganite La0.8Sr0.2MnO3
Publication date :
15 October 2007
Journal title :
Journal of Applied Physics
ISSN :
0021-8979
eISSN :
1089-7550
Publisher :
Amer Inst Physics, Melville, United States - New York
E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep 344, 1 (2001);
E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer, Heidelberg, 2003).
M. B. Salamon, Rev. Mod. Phys 73, 583 (2001).
M. Ausloos, L. Hubert, S. Dorbolo, A. Gilabert, and R. Cloots, Phys. Rev. B 66, 174436 (2002).
H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett 77, 2041 (1996);
P. E. Lofland, S. M. Bhagat, K. Ghosh, R. L. Greene, S. G. Karabashev, D. A. Shulyatev, A. A. Arsenov, and Y. Mukovskii, Phys. Rev. B 56, 13705 (1997);
M. Viret, H. Glattli, C. Fermon, A. M. de Leon-Guevara, and A. Revcolevschi, Europhys. Lett 42, 301 (1998);
W. Westerburg, F. Martin, P. J. M. van Bentum, J. A. A. J. Perenboom, and G. Jakob, Eur. Phys. J. B 14, 509 (2000);
M. Auslender, A. E. Kar'kin, E. Rozenberg, and G. Gorodetsky, J. Appl. Phys 89, 6639 (2001);
A. N. Ulyanov, I. S. Maksimov, E. B. Nyeanchi, and S.-C. Yu, Y. V. Medvedev, N. Yu. Starostyuk, and B. Sundqvist, J. Phys. Soc. Jpn 71, 927 (2002);
X.-J. Liu, Y. Moritomo, A. Nakamura, H. Tanaka, and T. Kawai, ibid 70, 3466 (2001);
O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Phys. Rev. B 67, 094431 (2003).
M. Pekala, V. Drozd, and J. Mucha, J. Magn. Magn. Mater 290291, 928 (2005).
A. Urushibara, Y Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172 (1996).
M. Ausloos, M. Pekala, J. Latuch, J. Mucha, Ph. Vanderbemden, and R. Cloots, J. Appl. Phys 96, 7338 (2004).
E. Dagotto, T. Hotta, and A. Moreo, Phys. Rep 344, 1 (2001);
E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of Manganites and Related Compounds (Springer, Heidelberg, 2003)
M. B. Salamon, Rev. Mod. Phys 73, 583 (2001).
M. Ausloos, L. Hubert, S. Dorbolo, A. Gilabert, and R. Cloots, Phys. Rev. B 66, 174436 (2002).
H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett 77, 2041 (1996);
P. E. Lofland, S. M. Bhagat, K. Ghosh, R. L. Greene, S. G. Karabashev, D. A. Shulyatev, A. A. Arsenov, and Y. Mukovskii, Phys. Rev. B 56, 13705 (1997);
M. Viret, H. Glattli, C. Fermon, A. M. de Leon-Guevara, and A. Revcolevschi, Europhys. Lett 42, 301 (1998);
W. Westerburg, F. Martin, P. J. M. van Bentum, J. A. A. J. Perenboom, and G. Jakob, Eur. Phys. J. B 14, 509 (2000);
M. Auslender, A. E. Kar'kin, E. Rozenberg, and G. Gorodetsky, J. Appl. Phys. 89, 6639 (2001);
A. N. Ulyanov, I. S. Maksimov, E. B. Nyeanchi, and S.-C. Yu, Y. V. Medvedev, N. Yu. Starostyuk, and B. Sundqvist, J. Phys. Soc. Jpn 71, 927 (2002);
X.-J. Liu, Y. Moritomo, A. Nakamura, H. Tanaka, and T. Kawai, ibid. 70, 3466 (2001);
O. Chmaissem, B. Dabrowski, S. Kolesnik, J. Mais, J. D. Jorgensen, and S. Short, Phys. Rev. B 67, 094431 (2003).
M. Pekala, V. Drozd, and J. Mucha, J. Magn. Magn. Mater 290291, 928 (2005).
A. Urushibara, Y Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B 51, 14103 (1995).
J. F. Mitchell, D. N. Argyriou, C. D. Potter, D. G. Hinks, J. D. Jorgensen, and S. D. Bader, Phys. Rev. B 54, 6172 (1996).
M. Ausloos, M. Pekala, J. Latuch, J. Mucha, Ph. Vanderbemden and R. Cloots, J. Appl. Phys 96, 7338 (2004).
M. Pekala, J. Mucha, B. Vertruyen, R. Cloots, and M. Ausloos, J. Magn. Magn. Mater 306, 181 (2006).
A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D 20, 1500 (1987).
J. Mucha, S. Dorbolo, H. Bougrine, K. Durczewski, and M. Ausloos, Cryogenics 44, 145 (2004).
S. Sergeenkov, H. Bougrine, M. Ausloos, and R. Cloots, Jetp Lett 69, 858 (1999).
S. Sergeenkov, H. Bougrine, M. Ausloos, and A. Gilabert, Phys. Rev. B 60, 12322 (1999).
Z. Q. Li, X. H. Zhang, W. R. Li, W. Song, H. Liu, P. Wu, H. L. Bai, and E. Y. Jiang, Physica B (Amsterdam) 371, 177 (2006).
M. Viret, L. Ranno, and J. M. D. Coey, Phys. Rev. B 55, 8067 (1997).
L. Sheng, D. Y. Xing, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett 79, 1710 (1997).
P. Wagner, I. Gordon, L. Trappeniers, J. Vanacken, F. Herlach, V. V. Moshchalkov, and Y. Bruynseraede, Phys. Rev. Lett 81, 3980 (1998).
S. Sergeenkov, M. Ausloos, H. Bougrine, A. Rulmont, and R. Cloots, Jetp Lett 70, 481 (1999).
W. E. Pickett and D. J. Singh, Phys. Rev. B 53, 1146 (1996).
Ch. Kittel Introduction to Solid State Physics (Wiley, New York, 1996).
X. J. Chen, H.-U. Habermeier, C. L. Zhang, H. Zhang, and C. C. Almasan, Phys. Rev. B 67, 134405 (2003).
B. I. Shklovskii and A. I. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
R. Mahendiran, A. Maignan, C. Martin, M. Hervieu, and B. Raveau, Phys. Rev. B 62, 11644 (2000).
B. Barnabe, J. Mater. Chem 8, 1405 (1998);
B. Raveau, M. Hervieu, A. Maignan, and C. Martin, ibid 11, 29 (2001);
B. Raveau, A. Maignan, C. Martin, and M. Hervieu, J. Supercond 12, 247 (1999).
Y. Tokura and Y. Tomioka, J. Magn. Magn. Mater 200, 1 (1999).
S. Rößler, S. Ernst, B. Padmanabhan, S. Elizabeth, H. L. Bhat, F. Steglich, and S. Wirth, http://arXiv.org/abs/cond-mat/07054243, http://aps.arxiv.org/ abs/0705.4243