[en] We constructed a mathematical model of the early response to Escherichia coli infection of the mammary gland and explored the roles and interactions between inflammatory cells and bacteria. The model incorporates 3 equations that describe the interactions among bacteria, milk somatic cells, and blood leukocyte densities. These 3 equations were fitted to cell densities observed during acute inflammatory responses in unvaccinated and vaccinated heifers inoculated with 10(4) or 10(6) cfu of E. coli. The rates computed for the cellular transit from the storage sites to the blood and from the blood to the milk were lower in cows receiving 10(4) cfu but increased at approximately 6 x 10(-6) and 30 x 10(-6) microL/cfu per h in nonvaccinated or vaccinated cows inoculated with 10(6) cfu, respectively. The cellular rates of bacterial killing were highest in unvaccinated cows ( approximately 400 x 10(-6) microL/cell per h) when compared with vaccinated cows (200 to 300 x 10(-6) microL/cell per h). A critical density of milk somatic cells at which bacteria density is constant was computed from the model at 2 x 10(6) cells/mL, and a one-way sensitivity analysis revealed that the changes in milk cellular densities were mostly sensitive to variations in the rate of bacterial killing and in the rate of production of inflammatory cells.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Detilleux, Johann ; Université de Liège - ULiège > Département de productions animales > Génétique quantitative
Vangroenweghe, F.
Burvenich, C.
Language :
English
Title :
Mathematical model of the acute inflammatory response to Escherichia coli in intramammary challenge
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bannerman, D. D., M. J. Paape, J. Lee, X. Zhao, J. C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11:463-472.
Barrio, B., F. Vangroenweghe, H. Dosogne, and C. Burvenich. 2000. Decreased neutrophil bactericidal activity during phagocytosis of a slime-producing Staphylococcus aureus strain. Vet. Res. 31:603-609.
Boutet, P., D. Boulanger, L. Gillet, A. Vanderplasschen, R. Closset, F. Bureau, and P. Lekeux. 2004. Delayed neutrophil apoptosis in bovine subclinical mastitis. J. Dairy Sci. 87:4104-4114.
Braga, C., M. T. Sala, and M. Dal Sasso. 1999. Pharmacodynamic effects of subinhibitory concentrations of rufloxacin on bacterial virulence factors. Antimicrob. Agents Chemother. 43:1013-1019.
Burvenich, C., V. Van Merris, J. Mehrzad, A. Araceli Diez-Fraile, and L. Duch. 2003. Severity of Escherichia coli mastitis is mainly determined by cow factors. Vet. Res. 34:521-564.
Chow, C. C., G. Clermont, R. Kumar, Z. Tawadrous, D. Gallo, B. Betten, G. Constantine, M. P. Fink, T. R. Billiar, and Y. Vodovotz. 2005. The acute inflammatory response in diverse shock states. Shock 24:74-84.
Clermont, G., R. Kumar, J. Bartels, Y. Vodovotz, S. Chang, and C. Chow. 2004. Predicting the response to therapy from a mathematical model. Crit. Care 8(Suppl. 1):206. (Abstr.)
Coxon, A., T. Tang, and T. N. Mayadas. 1999. Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 190:923-934.
Cullor, J. S., W. Smith, N. Fairley, S. L. Wood, J. D. Dellinger, and L. Souza. 1990. Effects of human recombinant granulocyte colony stimulating factor (HR-GCSF) on the hemogram of lactating dairy cattle. Vet. Clin. Pathol. 19:9-12.
Dale, D. C. 2004. Haematology: VII-Non-malignant disorders of leukocytes. http://www.acpmedicine.com/sam/pdf/med0507.pdf Accessed July 25, 2005.
Detilleux, J. 2004. Neutrophils in the war against Staphylococcus aureus: Predator-prey models to the rescue. J. Dairy Sci. 87:3716-3724.
Detilleux, J., K. Koehler, A. E. Freeman, and M. Kehrli, Jr. 1994. Immunological parameters of periparturient Holstein cattle: Genetic variation. J. Dairy Sci. 77:2640-2650.
Diez-Fraile, A., E. Meyer, L. Duchateau, and C. Burvenich. 2003. L-Selectin and β2-integrin expression on circulating bovine polymorphonuclear leukocytes during endotoxin mastitis. J. Dairy Sci. 86:2334-2342.
Djabri, B., N. Bareille, F. Beaudeau, and H. Seegers. 2002. Quarter milk somatic cell count in infected dairy cows: A meta-analysis. Vet. Res. 33:335-357.
Dosogne, H., F. Vangroenweghe, B. Barrio, P. Rainard, and C. Burvenich. 2001. Decreased number and bactericidal activity against Staphylococcus aureus of the resident cells in milk of dairy cows during early lactation. J. Dairy Res. 68:539-549.
Dosogne, H., F. Vangroenweghe, and C. Burvenich. 2002. Potential mechanism of action of J5 vaccine in protection against severe bovine coliform mastitis. Vet. Res. 33:1-12.
Edwards, S. W., M. Derouet, M. Howse, and R. J. Moots. 2004. Regulation of neutrophil apoptosis by McI-1. Biochem. Soc. Trans. 32:489-492.
Erskine, R. J. 1993. Nutrition and mastitis. Vet. Clin. North Am. Food Anim. Pract. 9:551-560.
Fang, W., M. Shi, L. Huang, Q. Shao, and J. Chen. 1993. Growth of lactobacilli, Staphylococcus aureus and Escherichia coli in normal and mastitic milk and whey. Vet. Microbiol. 37:115-125.
Goldberg, J. J., A. A. Bramley, R. E. Sjogren, and J. W. Pankey. 1994. Effects of temperature and oxygen tension on growth of Escherichia coli in milk. J. Dairy Sci. 77:3338-3346.
Hamer, W. H. 1906. Epidemic disease in England. Lancet 1:733-739.
Herbelin, C., B. Poutrel, F. B. Gilbert, and P. Rainard. 1997. Immune recruitment and bactericidal activity of neutrophils in milk of cows vaccinated with staphylococcal alpha-toxin. J. Dairy Sci. 80:2025-2034.
Hethcote, H. W. 2000. The mathematics of infectious diseases. Soc. Ind. Appl. Math. Rev. 42:599-643.
Hoeben, D., C. Burvenich, and R. Heyneman. 1997. Influence of antimicrobial agents on bactericidal activity of bovine milk polymorphonuclear leukocytes. Vet. Immunol. Immunopathol. 56:271-282.
Hogan, J. S., and K. L. Smith. 2003. Coliform mastitis: Review article. Vet. Res. 34:507-519.
Hogan, J. S., K. L. Smith, D. A. Todhunter, and P. S. Schoenberger. 1992. Field trial to determine efficacy of an Escherichia coli J5 mastitis vaccine. J. Dairy Sci. 75:78-84.
Jacobsen, S., T. Toelboell, and P. H. Andersen. 2005. Dose dependency and individual variability in selected clinical, haematological and blood biochemical responses after systemic lipopolysaccharide challenge in cattle. Vet. Res. 36:167-178.
Kornalijnslijper, J. E., T. van Werven, A. J. J. M. Daemen, J. van den Broek, T. A. Niewold, V. P. M. G. Rutten, and E. N. Noordhuizen-Stassen. 2003. In vitro growth of mastitis-inducing Escherichia coli in milk and milk fractions of dairy cows. Vet. Microbiol. 91:125-134.
Larson, D. A. 1992. Analysis of variance with just summary statistics as input. Am. Stat. 46:151-152.
Lehtolainen, T., T. Pohjanvirta, S. Pyorala, and S. Pelkonen. 2003. Association between virulence factors and clinical course of Escherichia coli mastitis. Acta Vet. Scand. 44:203-205.
Levin, B., and R. Antia. 2001. Why we don't get sick: The within-host population dynamics of bacterial infections. Science 292:1112-1115.
Li, Y., A. Karlin, J. D. Loike, and S. C. Silverstein. 2002. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proc. Natl. Acad. Sci. USA 99:8289-8294.
Li, Y., A. Karlin, J. D. Loike, and S. C. Silverstein. 2004. Determination of the critical concentration of neutrophils required to block bacterial growth in tissues. J. Exp. Med. 200:613-622.
Lohuis, J. A., W. Kremer, Y. H. Schukken, J. A. Smit, J. H. Verheijden, A. Brand, and A. S. Van Miert. 1990. Growth of Escherichia coli in milk from endotoxin-induced mastitic quarters and the course of subsequent experimental Escherichia coli mastitis in the cow. J. Dairy Sci. 73:1508-1514.
Mehrzad, J., H. Dosogne, F. Vangroenweghe, and C. Burvenich. 2001. A comparative study of bovine blood and milk neutrophil functions with luminol-dependent chemiluminescence. Luminescence 16:343-356.
Mehrzad, J., L. Duchateau, and C. Burvenich. 2005. High milk neutrophil chemiluminescence limits the severity of bovine coliform mastitis. Vet. Res. 36:101-116.
Monfardini, E., C. Burvenich, A. M. Massart-Leën, E. Smits, and M. J. Paape. 1999. Effect of antibiotic induced bacterial clearance in the udder on L-selectin shedding of blood neutrophils in cows with Escherichia coli mastitis. Vet. Immunol. Immunopathol. 67:373-384.
Nagahata, H. 2004. Bovine leukocyte adhesion deficiency (BLAD): A review. J. Vet. Med. Sci. 66:1475-1482.
Paape, M. J., D. D. Bannerman, X. Zhao, and J. Lee. 2003. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 34:597-627.
Postle, D. S., M. Roguinsky, and B. Poutrel. 1978. Induced staphylococcal infections in the bovine mammary gland. Am. J. Vet. Res. 39:29-35.
Rainard, P., and C. Riollet. 2003. Mobilization of neutrophils and defense of the bovine mammary gland. Reprod. Nutr. Dev. 43:439-457.
Rosinski, M., M. L. Yarmush, and F. Berthiaume. 2004. Quantitative dynamics of in vivo bone marrow neutrophil production and egress in response to injury and infection. Ann. Biomed. Eng. 32:1108-1119.
Rysanek, D., Z. Sladek, D. Vasickova, and M. Faldyna. 2005. Effects of certain inducers of leukocytes migration into the bovine mammary gland on neutrophil apoptosis manifestation in a subsequent in vitro cultivation. Physiol. Res. 54:305-312.
Saad, A. M., and K. Ostensson. 1990. Flow cytofluorometric studies on the alteration of leukocyte populations in blood and milk during endotoxin-induced mastitis in cows. Am. J. Vet. Res. 51:1603-1607.
Scaletti, R. W., D. S. Trammell, B. A. Smith, and R. J. Harmon. 2003. Role of dietary copper in enhancing resistance to Escherichia coli mastitis. J. Dairy Sci. 86:1240-1249.
Schalm, O. W., and J. Lasmanis. 1976. Cytologic features of bone marrow in normal and mastitic cows. Am. J. Vet. Res. 37:359-363.
Shuster, D. E., E. K. Lee, and M. E. Kehlri. 1996. Bacterial growth, inflammatory cytokine production, and neutrophil recruitment during coliform mastitis in cows within ten days after calving, compared with at midlactation. Am. J. Vet. Res. 5711:1569-1575.
Sladek, Z., and D. Rysanek. 2000. Apoptosis of polymorphonuclear leukocytes of the juvenile bovine mammary gland during induced influx. Vet. Res. 31:553-563.
Smith, J. L., J. S. Hogan, and K. L. Smith. 1999. Efficacy of intramammary immunization with an Escherichia coli J5 bacterin. J. Dairy Sci. 82:2582-2588.
Sordillo, L. M., K. Shafer-Weaver, and D. DeRosa. 1997. Immunobiology of the mammary gland. J. Dairy Sci. 80:1851-1865.
Suriyasathaporn, W., Y. H. Schukken, M. Nielen, and A. Brand. 2000. Low somatic cell count: A risk factor for subsequent clinical mastitis in a dairy herd. J. Dairy Sci. 83:1248-1255.
Vandeputte-Van Messom, G., C. Burvenich, E. Roets, A.-M. Massart-Leën, R. Heyneman, W. D. J. Kremer, and A. Brand. 1993. Classification of newly calved cows into moderate and severe responders to experimentally induced Escherichia coli mastitis. J. Dairy Sci. 60:19-29.
Vangroenweghe, F., H. Dosogne, and C. Burvenich. 2002. Composition and milk cell characteristics in quarter milk fractions of dairy cows with low cell count. Vet. J. 164:254-260.
Vangroenweghe, F., H. Dosogne, J. Mehrzad, and C. Burvenich. 2001. Effect of milk sampling techniques on milk composition, bacterial contamination, viability and functions of resident cells in milk. Vet. Res. 32:565-579.
Vangroenweghe, F., L. Duchateau, and C. Burvenich. 2004a. Moderate inflammatory reaction during experimental Escherichia coli mastitis in primiparous cows. J. Dairy Sci. 87:886-895.
Vangroenweghe, F., P. Rainard, M. Paape, L. Duchateau, and C. Burvenich. 2004b. Increase of Escherichia coli inoculum doses induces faster innate immune response in primiparous cows. J. Dairy Sci. 87:4132-4144.
Van Merris, V., E. Meyer, and C. Burvenich. 2002. Functional maturation during bovine granulopoiesis. J. Dairy Sci. 85:2859-2868.
Van Oostveldt, K., G. M. Tomita, M. J. Paape, A. V. Capuco, and C. Burvenich. 2002. Apoptosis of bovine neutrophils during mastitis experimentally induced with Escherichia coli or endotoxin. Am. J. Vet. Res. 63:448-453.
van Werven, T., E. N. Noordhuizen-Stassen, A. J. J. M. Daemen, Y. H. Schukken, A. Brand, and C. Burvenich. 1997. Preinfection in vitro chemotaxis, phagocytosis, oxidative burst, and expression of CD11/CD18 receptors and their predictive capacity on the outcome of mastitis induced in dairy cows with Escherichia coli. J. Dairy Sci. 80:67-74.
Vovodotz, Y., G. Clermont, C. Chow, and G. An. 2004. Mathematical models of the acute inflammatory response. Curr. Opin. Crit. Care 10:383-390.
Wanner, J. M., G. W. Rogers, M. E. Kehrli, Jr., and J. B. Cooper. 1998. Intramammary infections in primiparous Holsteins: Heritabilities and comparisons of bovine leukocyte adhesion deficiency carriers and noncarriers. J. Dairy Sci. 81:3293-3299.
Watson, R. W., H. P. Redmond, J. H. Wang, and D. Bouchier-Hayes. 1996. Mechanisms involved in sodium arsenite-induced apoptosis of human neutrophils. J. Leukoc. Biol. 60:625-632.
Wenz, J. R., G. M. Barrington, F. B. Garry, R. P. Dinsmore, and R. J. Callan. 2001. Use of systemic disease signs to assess disease severity in dairy cows with acute coliform mastitis. J. Am. Vet. Med. Assoc. 218:567-572.
Wigginton, J. E., and D. Kirschner. 2001. A model to predict cell-mediated immune regulatory mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 166:1951-1967.
Wise, A. J., J. S. Hogan, K. Takemura, and K. L. Smith. 2003. Opsonic activity of serum and whey from cows immunized with the ferric citrate receptor. J. Dairy Sci. 86:146-151.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.