Paper published in a journal (Scientific congresses and symposiums)
Syntactic complexity of ultimately periodic sets of integers
Rigo, Michel; Vandomme, Elise
2011In Lecture Notes in Computer Science, 6638, p. 477-488
Peer reviewed
 

Files


Full Text
rigo-vandomme2.pdf
Author preprint (183.93 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
syntactic monoid; complexity; regular language; numeration system; decision problem
Abstract :
[en] We compute the cardinality of the syntactic monoid of the language 0^∗rep_b(mN) made of base b expansions of the multiples of the integer m. We also give lower bounds for the syntactic complexity of any (ultimately) periodic set of integers written in base b. We apply our results to some well studied problem: decide whether or not a b-recognizable sets of integers is ultimately periodic.
Disciplines :
Computer science
Mathematics
Author, co-author :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Vandomme, Elise ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Syntactic complexity of ultimately periodic sets of integers
Publication date :
2011
Event name :
LATA 2011 (5th conf. Languages and Automata, Theory and Applications)
Event place :
Tarragona, Spain
Event date :
from 26-05-2011 to 30-05-2011
Audience :
International
Journal title :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Publisher :
Springer, Berlin, Germany
Volume :
6638
Pages :
477-488
Peer reviewed :
Peer reviewed
Available on ORBi :
since 25 February 2011

Statistics


Number of views
208 (38 by ULiège)
Number of downloads
5 (3 by ULiège)

Scopus citations®
 
2
Scopus citations®
without self-citations
1
OpenCitations
 
1
OpenAlex citations
 
3

Bibliography


Similar publications



Contact ORBi